國立政治大學 112 學年度 碩士班暨碩士在職專班 招生考試試題

第1頁,共1頁

考試科目 數理統計學 系所別 統計學系 考試時間 2月3日(星期五)第2節

- Note. All parts in the same problem are worth the same points.
- 1. (40 pts) Suppose that X is a random variable whose distribution is $N(\theta, 1)$, the normal distribution with mean θ and variance 1. Suppose that we have IID (independent and identically distributed) observations Y_1, \ldots, Y_n , and the distribution of Y_1 is the same as the distribution of X^3 . Suppose that the parameter $\theta \in (-\infty, \infty)$ is unknown.
 - (a) Find a PDF of X^3 .
 - (b) Find the maximum likelihood estimator for θ based on the observations Y_1, \ldots, Y_n .
 - (c) For $\alpha \in (0,1)$, find the likelihood ratio test of size α for testing

$$H_0: \theta = 0$$
 versus $H_1: \theta \neq 0$.

Express the rejection region in terms of a test statistic and give the distribution of the test statistic under H_0 .

- (d) Find the (uniformly) minimum variance unbiased estimator for θ^2 based on the observations Y_1, \ldots, Y_n .
- 2. (60 pts) Suppose that $(X_1, ..., X_n)$ is a random sample from the uniform distribution on $[-\theta, \theta]$, where $\theta > 0$ is an unknown parameter. Let

$$X_{(n)} = \max_{1 \le i \le n} X_i$$

and

註

$$X_{(1)} = \min_{1 \le i \le n} X_i.$$

- (a) Show that $X_{(n)}$ is a consistent estimator for θ .
- (b) Determine whether $X_{(n)}$ and $X_{(1)}/X_{(n)}$ are independent. Justify your answer.
- (c) Find $\hat{\theta}$: an estimator for θ based on the data such that

$$E\left((\hat{\theta} - \theta)^2\right) < E\left((X_{(n)} - \theta)^2\right)$$

for every $\theta > 0$. Justify your answer.

(d) Construct a 95% confidence interval for θ based on the statistic $(X_{(1)},X_{(n)})$.

二、試題請隨卷繳交。