大同大學 100 學年度研究所碩士班入學考試試題

考試科目:冶金熱力

所別:材料工程研究所

第1/2頁

註:本次考試 不可以參考自己的書籍及筆記;

不可以使用字典;

可以使用計算器。

(1) Calculate the change in the enthalpy and the change in entropy when one mole of solid A is heated from T_1 to T_2 . The constant-pressure molar heat capacity of solid A varies with temperature as (10%)

$$c_p = a + b T - c / T^2$$
 (J/mole K)

- (2) (a) Show that $\left(\frac{\partial H}{\partial P}\right)_T = V(1 \alpha T)$, where $\alpha = \text{isobaric thermal expansivity} = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_P$. (7%)
 - (b) Copper exists in the state T = 298 K, P = 1 atm. Calculate the temperature to which the copper must be raised at 1 atm pressure to cause the same increase in molar enthalpy as is caused by increasing its pressure to 1000 atm at 298 K. The molar volume of Cu at 298 K is 7.09 cm³, and the thermal expansivity is 0.493×10^{-3} K⁻¹. These values can be taken as being independent of pressure in the range 1-1000 atm. The constant-pressure molar heat capacity of Cu is (8%)

$$c_p = 22.64 + 6.28 \times 10^{-3} T$$
 (J/mole K)

- (3) Explain the following terms:
 - (a) Ideal gas (5%)
 - (b) Ideal solution and regular solution. (5%)
 - (c) Gibbs-Helmholtz equation. (5%)
 - (d) Clapeyron equation. (5%)
 - (e) Fugacity. (5%)
- (4) One mole of a monatomic ideal gas, in the initial state T = 273K, P = 1atm, is subjected to the following three processes, each of which is conducted reversibly: (hint: 1atm = $101325Nt/m^2$)
 - (a) A doubling of its volume at constant pressure,
 - (b) Then a doubling of its pressure at constant volume
 - (c) Then a return to the initial state along a straight line path on the P-V diagram (where P in atm, V in liter)

Calculate the heat and work effects which occur during each of the three processes.(18%)

(5) A rigid container is divided into three compartments of equal volume by two partitions. There are two kinds of ideal gas, A and B. One compartment contained 4 molecules of A and 2 molecules of B, another contained 1 molecule of A and 5 molecules of A, the other contained 4 molecules of A and 2 molecules of A. Please calculate the entropy change between the initial state and most probable state after all the partitions were removed. (16%)

大同大學 100 學年度研究所碩士班入學考試試題

考試科目:冶金熱力

所别:材料工程研究所

第2/2頁

註:本次考試 不可以参考自己的書籍及筆記; 不可以使用字典; 可以使用計算器。

(6) True or false (After writing down the question number, O denotes that you agree the description, otherwise × denotes you disagree the description)

(是非題,作答請標示題號後,以O代表您認爲該描述爲正確,×代表您認爲該描述有錯誤)

- (a) Density is an intensive property. (2%)
- (b) The entropy of any material at 0 K is equal to zero (the third law of the thermodynamics). (2%)
- (c) For the chemical potential (μ_i) , $\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,P,nj\neq i} = \left(\frac{\partial A}{\partial n_i}\right)_{T,P,nj\neq i} (2\%)$
- (d) Regular solution exhibits ideal mixing behavior. (2%)
- (e) In the effect of melting of the metal on the Ellingham line for oxidation of the metal, the Ellingham line for the oxidation of liquid A to form solid AO₂ has a greater slope than the corresponding line for the oxidation of solid. (The line contains an "elbow upwards" at T_{mA}.) (2%)
- (f) Pressure is a state function. (2%)
- (g) Increasing the temperature of a nonideal solution will causes a decrease in the extent to which its components deviate from ideal behavior. (2%)
- (h) The relationship, dG = VdP, holds when the system is an closed system with only PV work. (2%)