PRAF 1005 ER LT »F IR

37 19p 15:30~17:00 dnasemlFesi B LA PRI A

APEE TEpgFri - o313 | gix |
PP TR (£3F#17)
(F @ * -5 w2 272 5 £8% | GRS

1. [159%] provide one application that prefers the data structure or the algorithm described below.
(a) Give an example that prefers stack to queue. [3%]
(b) Give an example that prefers doubly linked list to single linked list. [3%)]
(c) Give an example that prefers merge sort to quick sort. [3%]
(d) Give an example that prefers heap to AVL-tree. [3%)]

(e) Give an example that prefers B-tree to hash table. [3%]

2. [10%0] given the binary tree with post-order traversal fechgdba and in-order traversal fecabhdg,
(a) Show the binary tree. [5%]

(b) Represent the binary tree as a unique string (i.e., every binary tree has its own string). [5%]

3. [15%] Fill in the blanks (assumption: the array A[1...] has kept N scores in ascending order).

: Algorithm 1: InsertArray(A, X) : Algorithm 2: DeleteArray(A, x)
Purpose: Insert score x into the array A Purpose: Delete score x from the array A
{ for (i=1;i<=N; i++) { for (i=1;i<=N;i++)
: if (Ai]>x) break; if (Ali]==x) break;
j=N; - if(i<=N)
while (j >=1) | j=i+ 1
{ (2) BmOEEEBLES | while (j <= N) and (A[j] == x)
i=i-1) =it
Alll = x; while (j <= N)
. N=N+1; { (b) mpEEEBLES
) i=i+1;
f | =i+
N=N-1; }o}
: 3
: Algorithm 3: CountArray(A) : Algorithm 4: ReverseArray(A) :
Purpose: Compute the number of distinct Purpose: Make the array A in descending order
scores in the array A {0 i=1 :
-{ pre=-1; // assume all nonnegative scores! : j=n;
5 count = 0; while (__ (d) EPEEERLEE)
for (i=1;i <= N; i++) - { temp=Al;
if (Ali] > pre) Alil = A[j];
{ count = count + 1; (e) ENEEESLES |
(c) smpumEstes; } - izi+ 1
return count; i=j-1; }

PRAF 1005 ER LT »F IR

37 19p 15:30~17:00 dnasemlFesi B LA PRI A

APEE TEpgFri - o313 | gix |
PP TR (£3F%27)
(F @ * -5 w2 272 5 £8% | GRS

4. [15%] Fill in the blanks (assumption: the linked list L is sorted in ascending order of the score).

! Algorithm 1: SearchList(L, x) ¢ Algorithm 2: DeleteList(L, X)
Purpose: Find the node with score x in L Purpose: Delete score x from L
:{ pre=null :{ (pre, cur, flag) = SearchList(L, x);
: cur = L; if (flag == false) return;
flag = false; temp = cur;
while (cur = null) cur = (*cur).link;
if ((*cur).score < x) while (cur = null)
{ pre = cur; if ((*cur).score == x)
(a) BoEEESLES;)} cur = (*cur).link;
else break; else break;
if (cur = null) if (pre == null)
if ((*cur).score == x) L = cur;
flag = true; else
: return (pre, cur, flag); (b) @mpEmAsLfE:; :
:} // cur points to the first node with score >= x! free(temp); // remove the unused nodes :
:) :
: Algorithm 3: InsertList(L, x) : Algorithm 4: ReverseList(L)
Purpose: Insert a node with score x into L Purpose: Make L in descending order
{ (pre, cur, flag) = SearchList(L, x); S if (L==null) return;
5 y = NewNode(); //create anewnode! : if (*L).link == null) return;
(*y).score = x; pre = null;
(*y).link = cur; - cur=L;
if (pre == null) do{ L = (*cur).link;
(C) BOEMESLHES ; (d) EOEAAS S
else pre = cur;
_ (*pre).link = y; cur=1L;
} . }while (cur = null);
' (e) BOEEES LS
)

5. [15%] Heap is a useful data structure in search and sort. Answer the following questions about it:
(a) List the necessary properties of a heap structure. [3%]
(b) Write a C/C++ program to store N numbers as a heap. [6%]
(c) Write a C/C++ program to sort the N numbers in the heap. [6%]

6. [109%] given two strings A and B, answer the following questions:
(@) Write a C/C++ program to find the longest common substring between A and B. [6%]

(b) Express the time complexity of your program. [4%]

PRAF 1005 ER LT »F IR

37 19p 15:30~17:00 AL ARAR LS 2 A BEEAAPBRDEAR

ApEEg gt o1 8 | ik
PP TR (£3F%aF)
(F @ * -5 w2 272 5 £8% | GRS

7. [10%] Huffman codes are widely used for data compression. Suppose we have a 1000-character
data file that we wish to store compactly. The text file contains only 6 distinct characters, i.e., {A,

B, C, D, E, F}, and the corresponding frequencies are given in the following table.

character | A B C D E F

frequency | 0.18 | 0.05 | 0.15 | 0.22 | 0.32 | 0.08

(@) Mlustrate how to build Huffman’s tree and derive your Huffman codes. [5%]
(b) Use your Huffman codes to encode the word “FACE”. [2%)]

(c) How many bits are required to store the data file if Huffman codes are used? [3%]

8. [10%] given a computer network (assumption: two computers have at most one connection line)
in which each connection line is associated with the (estimated) transmission time,
(a) List two data structures that are typically used to represent the network. [4%]
(b) Design an algorithm to find the fastest path from one computer to another. [6%]

(Note: Write your algorithms in the form of pseudo-codes together with detailed comments.)

