中原大學 100 學年度 碩士班 入學考試

3月19日13:30~15:00

企業管理學系乙組

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你! (共1百第1百)

科目: 微積分

□可使用計算機,惟僅限不具可程式及多重記憶者

■不可使用計算機

1. [15%] Find the following limits

$$(1). \lim_{x\to\infty} \left(\sqrt{x^2+x}-x\right),$$

(2).
$$\lim_{x\to 0} \frac{x-\sin x}{1-\cos x}$$
,

(1).
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right)$$
, (2). $\lim_{x \to 0} \frac{x - \sin x}{1 - \cos x}$, (3). $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{k^2 + n^2}$.

2. [15%] Evaluate the following integrals if possible.

(1).
$$\int_0^3 \frac{1}{x-2} \, dx$$

(1).
$$\int_0^3 \frac{1}{x-2} dx,$$
 (2).
$$\int_0^4 x \sqrt{x^2 + 9} dx,$$

(3).
$$\iint_{D} e^{(x^{2}+y^{2})} dxdy, \text{ where } D = \{(x, y) | x^{2} + y^{2} \le 1\}.$$

3. [10%] Test the following series for convergence or divergence.

(1).
$$\sum_{n=2}^{\infty} \frac{1}{[\ln(n)]^2}$$
,

(2).
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
.

4. [10%] Use the differentials to estimate $\sqrt{3.99}$.

5. [20%] Find the extrema of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraint $z^2 = xy + 1$.

[20%] A liquid from of penicillin manufactured by a pharmaceutical firm is sold in bulk at a price of \$200 per unit. If total production cost for x units is

$$C(x) = 500,000 + 80x + 0.003x^2$$

and if the production capacity of the firm is at most 30,000 units in a special time. How many units of penicillin must be manufactured and solid in that time to maximize the profit?

7. [10%] Let Y_1 and Y_2 have joint density given by

$$f(y_1, y_2) = \begin{cases} 2y_1, & 0 \le y_1 \le 1, & 0 \le y_2 \le 1 \\ 0, & elsewhere. \end{cases}$$

Find the expected value of Y_1 .