中原大學 100 學年度 碩士班 入學考試

3月19日13:30~15:00

物理學系 、物理學系(在職)

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你!

科目: 量子物理

(共2頁第1頁)

□可使用計算機,惟僅限不具可程式及多重記憶者

■不可使用計算機

A. 單選題(20分,每題5分,答案必需依序填於答案卷)

1. The energy density of blackbody radiation is $u(v,T) = \frac{8\pi h}{c^3} \frac{v^3}{a^{hv/kT} - 1}$. At low frequency, this formula can be reduced to ____

(A)
$$u(v,T) = -\frac{8\pi h v^3}{c^3}$$
 (B) $u(v,T) = \frac{8\pi v^2}{c^3} kT$

(B)
$$u(v,T) = \frac{8\pi v^2}{c^3} kT$$

(C)
$$u(v,T) = \frac{8\pi h v^3}{c^3} e^{-hv/kT}$$
 (D) $u(v,T) = \frac{8\pi h^2 v^4}{c^3 kT}$

(D)
$$u(v,T) = \frac{8\pi h^2 v^4}{c^3 kT}$$

2. Consider a nonrelativistic electron whose energy is E. What is its de Broglie wavelength?

(A)
$$\frac{h}{E}$$

(B)
$$\frac{E}{h}$$

(C)
$$\frac{h}{\sqrt{2m_e E}}$$

(D)
$$\frac{\sqrt{2m_e E}}{h}$$

3. Consider the wavelength change $\lambda' - \lambda = \frac{h}{mc}(1-\cos\theta)$ of the Compton scattering. The Compton wavelength of the electron is $\frac{h}{mc} = 2.426 \times 10^{-12}$ m. When the scattered photon has the maximum energy loss, what is the wavelength change?

(B)
$$1.213 \times 10^{-12}$$
 m

(B)
$$1.213 \times 10^{-12}$$
 m (C) 2.426×10^{-12} m

(D)
$$4.852 \times 10^{-12}$$
 m

4. The Hermite polynomials show up in the eigenfunctions of the harmonic oscillator. The polynomials can be expressed as $H_n(y) = (-1)^n e^{y^2} \frac{d^n}{dy^n} e^{-y^2}$. What is $H_3(y)$?

(A)
$$8y^3 - 12y$$
 (B) $8y^3 - 4y$ (C) $-8y^3 + 12y$

(B)
$$8y^3 - 4y$$

(C)
$$-8y^3 + 12y$$

(D)
$$-8y^3 + 4y$$

B. 計算題 (80 分, 需寫出計算過程)

1. (20 points) The state of a particle is described by the following wave function:

$$\psi(x) = A$$
 for $-a < x < 2a$
= 0 for $x < -a$ and $x > 2a$

- (a) A is real. Find A by using the normalization condition.
- (b) What is the probability of finding the particle between x = 0 and x = a?
- (c) Calculate $\langle x \rangle$ and $\langle x^2 \rangle$ for this state.
- (d) Calculate the momentum probability density.

中原大學 100 學年度 碩士班 入學考試

3月19日13:30~15:00

物理學系 、物理學系(在職)

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你!

科目: 量子物理

(共2頁第2頁)

□可使用計算機,惟僅限不具可程式及多重記憶者

■不可使用計算機

2. (20 points) Consider a simple harmonic oscillator system with Hamiltonian $H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$.

Define the operators A and A^+ as: $A = \sqrt{\frac{m\omega}{2\hbar}}x + i\frac{p}{\sqrt{2m\omega\hbar}}$ and $A^+ = \sqrt{\frac{m\omega}{2\hbar}}x - i\frac{p}{\sqrt{2m\omega\hbar}}$.

- (a) Find the commutation relations [H,A], $[H,A^+]$, and $[A,A^+]$.
- (b) When a perturbation λH_1 is introduced, $H\to H+\lambda H_1$. We can expect that the energy eigenvalues $E_n\to E_n+\lambda E_n^{(1)}+\lambda^2 E_n^{(2)}...$ Suppose the perturbation is $\lambda H_1=\lambda x$. Calculate the first-order energy shift $\lambda E_n^{(1)}$ and the second-order energy shift $\lambda^2 E_n^{(2)}$.
- 3. (20 points) (a) Use the Schrödinger equation to calculate the eigenfunctions and the energy eigenvalues for an electron in a three-dimensional cubical box with side L.
 - (b) Consider the Pauli exclusion principle. What is the lowest energy of a set of 25 electrons in a cubical box with side L?
- 4. (10 points) Consider the addition of spins for a two-electron system. We can denote the spinor of the first electron by $\chi_{\pm}^{(1)}$, and similarly for the spinor $\chi_{\pm}^{(2)}$ of the second electron. Use the combinations of $\chi_{\pm}^{(1)}$ and $\chi_{\pm}^{(2)}$ to represent the triplet states and the singlet state.
- 5. (10 points) An electron in a hydrogen atom is in a state described by the wave function

$$\psi(\vec{r}) = A(\psi_{100}(\vec{r}) - 2\psi_{200}(\vec{r}) + 3\psi_{211}(\vec{r}) - \sqrt{2}\psi_{210}(\vec{r}))$$

- (a) Find *A* by using the normalization condition.
- (b) What are the expectation values of L_z and \vec{L}^2 ?