國立成功大學 111學年度碩士班招生考試試題

編 號: 198

系 所: 電機資訊學院-微電、奈米聯招

科 目: 固態電子元件

日 期: 0219

節 次:第2節

備 註: 可使用計算機

编號: 198

國立成功大學 111 學年度碩士班招生考試試題

所:電機資訊學院-微電、奈米聯招

考試科目: 固態電子元件

考試日期:0219,節次:2

第1頁,共2頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. If the doping concentration of the p- and n-type semiconductors of a pn junction are N_A and N_D , respectively, and the dielectric constant of the semiconductor is ϵ_s . (a) Find the built-in voltage V_{bi} of the pn junction. Why there is a V_{bi} ? (5%)

- (b) Find the relationship between x_n and V_{dn} , where x_n is the width of the depletion region on the n-type semiconductor side, V_{dn} is the voltage drop across it. (5%)
- (c) If the pn junction is under a forward bias of $1.1V_{bi}$, what could be the voltage drop across the whole depletion region? Briefly describe the reason. (5%)
- 2. (a) Plot the energy band diagram of an npn bipolar junction transistor operating in the forward active region. (5%)

(b) Describe briefly why Fermi level pinning might occur in the MS contacts. (5%)

- (c) Explain the electric field shielding effect of the MOS structure using the potential distribution of the gate bias. (5%)
- 3. (a) Briefly describe the effects of CMOS scaling on the threshold voltage and the subthreshold swing of MOSFETs and its causes. (10%)
 - (b) Plot a typical semi-logarithmic transfer curve of MOSFET and mark the subthreshold, linear, and saturation regions. (5%)
 - (c) Explain the role played by the pinch-off region on the output I-V characteristics of MOSFET. (5%)
- 4. When we apply the following changes to an N-type silicon MOSFET transistor with high-k gate dielectric and a metal gate electrode, what would be the impact on its threshold voltage (Vth)? (12%)

Applied Change	V_{th} increase (\uparrow) or V_{th} decrease (\downarrow)
Increase the gate metal work function	,
Increase the doping concentration in the silicon body	
Increase the gate dielectric thickness	
Use a gate dielectric material with a higher dielectric constant	
Increase the operating (measurement) temperature	×
Add negative charge at the silicon/high-K interface	

- 5. Which of the following is <u>FALSE</u> when $V_{sb} > 0$ in a n-channel MOSFET (5%)
 - A. Body effect occurs and the depletion region across the source-to-body junction widens
 - B. The source-to-body junction is reverse-biased

 - C. The threshold voltage of the MOSFET decreases when body effect occurs
 D. Body effect may occur when the MOSFET source is not tied to ground in a CMOS technology
 - E. Body effect is possible for both n-channel and p-channel MOSFETs

編號: 198

國立成功大學 111 學年度碩士班招生考試試題

系 所:電機資訊學院-微電、奈米聯招

考試科目:固態電子元件

考試日期:0219、節次:2

第2頁,共2頁

- Which of the following is <u>NOT</u> a scattering mechanism that reduces the electron mobility in a MOSFET transistor (5%) ?
 - A. Surface roughness scattering
 - B. Phonon (lattice) scattering
 - C. Coulombic scattering
 - D. Photon scattering
- List <u>ONE</u> scattering mechanism in a semiconductor material that causes electron/hole mobility reduction
 which becomes more prominent (larger) at higher temperature, and occurs in the bulk (not at the surface)
 of the MOSFET transistor (5%)
- 8. Regarding the gate-to-source and gate-to-drain overlap regions in a MOSFET transistor,
 - (a) What is the advantage of maintaining an overlap? (5%)
 - (b) List one disadvantage when the overlap length is too long. (5%)
- Following is a typical i-v characteristics of a PN junction diode, measured in a dark environment. If we shine light on the diode (hv > E₂), it becomes a photodetector or a solar cell. Sketch the new i-v characteristics in the presence of light illumination (5%).

- 10. Regarding Early Effect in NPN bipolar junction transistors (BJT),
 - (a) Please sketch a typical ic-vcE curve in the presence of Early Effect. (4%)
 - (b) What is the physical cause of Early Effect ? (4%)