國立交通大學 101 學年度碩士班考試入學試題

科目:工程數學(3091)(3101)

考試日期:101年2月17日 第 1 節

系所班別:土木工程學系

組別:土木系丙組一般生

第 | 頁,共 |

頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

1. Solve ordinary differential equation (do not use Laplace transform):

$$x'' + 4x' = 4$$
, $x(0) = x'(0) = 0$. (10%)

- 2. Solve ordinary differential equation: $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \ln x^3$ (10%)
- 3. Use Laplace transform to solve the given system equation, subject to the given conditions: (20%)

$$\begin{cases} x'' - 4x' + 8y' + 4y = 4 \\ 2y' - 2x' + y = 0 \end{cases} \quad x(0) = x'(0) = y(0) = 1$$

4. Sole the boundary value problem: (10%)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad \begin{cases} 0 \le x \le 1 \\ 0 \le y \le \pi/2 \end{cases}$$

with boundary conditions

$$u(0,y) = 0$$
, $u'(x,0) = 0$, $u(x,\pi/2) = 0$, $u(1,y) = g(y)$, where g is an analytic

function of y. (leaving Fourier coefficient in integral form)

- 5. A satellite moves with constant speed along a meridian earth and keeps at a height R from the center of the Earth. The angular speed of the Earth rotation is ω and the angular speed of the satellite is σ . Find the velocity (7%) and acceleration of the satellite. (8%)
- 6. For the given vector fields $\mathbf{v}_1 = \begin{bmatrix} ye^x & e^x & 2z \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} e^x & ye^x & e^z \end{bmatrix}$,
 - (1) Which vector field can be represented as the gradient of a potential f? (8%) (Hint: Check if $\operatorname{curl} \mathbf{v} = \mathbf{0}$?)
 - (2) Find f for the vector field in (a)? (7%)
- 7. Show that $\phi = C \cosh x \sin y$ is a permissible potential function where C is a constant (5%) and its corresponding stream function that is a conjugate harmonic function corresponding to the potential function. (5%)
- 8. Heat flows in the direction of maximum decrease of temperature $T=\sin x$ coshy. Find the direction of the heat flow at a given point $(\pi/4, \ln 5)$. (10%)