題號: 51

國立臺灣大學 111 學年度碩士班招生考試試題

科目:代數節次: 2

題號: 51 共 / 頁之第 / 頁

(1) In this problem, we will consider some properties of finite groups

(a) (10 pts) Classify groups of order 8 up to isomorphism.

- (b) (5 pts) Let S_4 be the permutation group on 4 elements and let G be the Sylow 2-subgroup of S_4 . Determine the structure of G (e.g. identify G to be one of those on your list in problem (1)).
- (c) (10 pts) Show that there is a surjective group homomorphism from S_4 to S_3 and determine its kernal.
- (2) Let R be a commutative ring with identity and $I, J \triangleleft R$ are two ideals.
 - (a) (5 pts) Show that $I \cap J$, I + J and IJ are ideals of R.
 - (b) (5 pts) Suppose that I + J = R. Prove that $I \cap J = IJ$.
 - (c) (5 pts) Give an example that $I \cap J = IJ$ but $I + J \neq R$.
 - (d) (10 pts) Suppose that I+J=R. Prove that $R/IJ\cong R/I\times R/J$.
- (3) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial with coefficient in \mathbb{Q} .
 - (a) (5 pts) Let $u \in \mathbb{C}$ be a root of f(x). Prove that $\mathbb{Q}[u] = \mathbb{Q}(u)$.
 - (b) (5 pts) Let u_1, u_2 be any two roots of f(x). Prove that there is an isomorphism of fields $\phi : \mathbb{Q}(u_1) \xrightarrow{\cong} \mathbb{Q}(u_2)$.
 - (c) (10 pts) Let K be the splitting field of f(x) over \mathbb{Q} . Prove that there is an isomorphism of K extending ϕ .
 - (d) (10 pts) Let $f(x) = x^3 + x + 2022$. Determine its Galois group.
- (4) Let N be a free abelian group (for example, $\mathbb{Z} \oplus \mathbb{Z}$) with a basis $\{u,v\}$ and M be a free abelian group with a basis $\{x,y,z\}$. We consider a group homomorphism ϕ such that $\phi(u)=18x+60y+18z$ and $\phi(v)=24x+60y+12z$. Let $G=M/\mathrm{im}(\phi)$.
 - (a) (5 pts) Determine the rank of G.
 - (b) (5 pts) Determine the structure of the torsion part of G.
 - (c) (10 pts) Find a subset S of M so that the image of S in G forms a basis of the free part of G.

試題隨卷繳回