國立中正大學 111 學年度碩士班招生考試

試題

[第2節]

科目名稱	半導體元件物理
系所組別	機械工程學系光機電整合工程

一作答注意事項—

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別</u>、<u>科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 111 學年度碩士班招生考試試題

科目名稱:半導體元件物理

系所組別:機械工程學系光機電整合工程

本科目共 1 頁 第 1 頁

- 1. (20%) What are direct-bandgap and indirect-gap materials? Explain their inter-band optical emission and absorption processes.
- 2. (30%) A new semiconductor has a bandgap of 0.5 eV and an intrinsic carrier density of $N_i = 10^{14}$ cm⁻³ at T=300K. The electron and hole mobilities are 8000 cm²/V-s and 4500 cm²/V-s, respectively.
 - (a) What are the electron and hole diffusion coefficients? (10%)
 - (b) A bar made of this new material has a cross-sectional area of 100 μ m² and a length of 10 μ m. Find the current when a bias of 10 V is applied across the bar. (10%)
 - (c) Schematically draw the absorption coefficient spectrum of this material. If a 100 mW CO₂ laser with wavelength of λ =10 μ m is incident on this material, determine the number of electrons and holes generated per second. (10%)
- 3. (10%) Consider a Ge pn junction at T = 300 K with an acceptor concentration of $N_a = 10^{15}$ cm⁻³ and a donor concentration of $N_d = 10^{12}$ cm⁻³, respectively. The intrinsic carrier density is $N_i = 10^{10}$ cm⁻³. Calculate the built-in potential barrier in this Ge pn junction.

4. (40%)

- (a) Please sketch the ideal energy-band diagrams (before and after "ohmic" contact; before and after "Schottky" contact) for an ideal metal-to-n-type semiconductor junction. (20%)
- (b) Please sketch the ideal energy-band diagrams for an ideal metal-to-n-type semiconductor Schottky junction under reverse bias. (10%)
- (c) Please sketch the ideal energy-band diagrams for an ideal metal-to-n-type semiconductor Schottky junction under forward bias. (10%)

(please label the following terms in the depletion region: W (the width of depletion region), $\phi_{\rm in}$ (work function of metal), $\phi_{\rm in}$ (work function of semiconductor), $\phi_{\rm Bn}$ (barrier height), χ (electron affinity of semiconductor), $V_{\rm bi}$ (built-in potential barrier), $V_{\rm R}$ (reverse-biased voltage) and $V_{\rm a}$ (forward-bias voltage).)