# 國立中正大學 111 學年度碩士班招生考試

# 試 題

## [第1節]

| 科目名稱 | 電磁學          | * .D.' |
|------|--------------|--------|
| 条所組別 | 電機工程學系-電磁晶片組 |        |

#### -作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之系所組別、科目名稱是否相符。
- 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、
   畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

#### 國立中正大學 111 學年度碩士班招生考試試題

科目名稱:電磁學

本科目共 3 頁 第 1 頁

系所組別:電機工程學系-電磁晶片組

- 1. (8%) The potential field in a uniform material with dielectric constant  $\varepsilon_r = 80$  is  $V = 2x^2y^4$  (V). Find
  - (a) (4%) The electric field intensity  $\vec{E}$ .
  - (b) (4%) The polarization vector  $\vec{P}$ .
- 2. (12%) A boundary separating two dielectric media with permittivities  $\varepsilon_1 = 23\varepsilon_0$  (z > 0) and  $\varepsilon_2 = 4\varepsilon_0$  (z < 0) lies in the x-y plane. The boundary has a surface charge density  $\rho_s = 2.653 \times 10^{-10}$  C/m² and the electric field intensity in medium 1 at the boundary is  $\vec{E}_1 = \hat{a}_x 5 + \hat{a}_y 10 + \hat{a}_z 2$  (V/m). Find:
  - (a) (4%) The tangential electric field in medium 2.
  - (b) (4%) The normal electric field in medium 2.
  - (c) (4%) The angle between  $\vec{E}_2$  and z axis.
- 3. (10%) A coaxial cable as shown in Fig. 1 consists of two concentric, conducting cylindrical surfaces of inner and outer radii a and b, respectively. An insulating material of dielectric constant  $\varepsilon_r$  fills the space between the two surfaces. Two charges +Q and -Q uniformly distribute on the inner and outer surfaces. Given  $\varepsilon_r = 2.3$ , a = 0.5 cm, b = 2 cm, l = 100 cm, and Q = 0.2 nC. determine:
  - (a) (3%) The electric field in the dielectric medium.
  - (b) (3%) The unit-length capacitance of the cable.
  - (c) (4%) The stored electrostatic energy in the dielectric medium
- 4. (12%) An infinitely long conductor wire carrying current I is situated next to a rectangular loop as shown in Fig. 2. Given I = 5 A, d = 1 cm, a = 2 cm, b = 8 cm, determine:
  - (a) (4%) The net magnetic force acting on the loop.
  - (b) (4%) The magnetic flux that penetrates the loop.
  - (c) (4%) The mutual inductance between the wire and the loop.

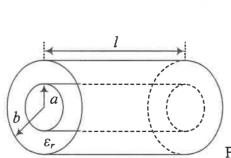



Fig. 1

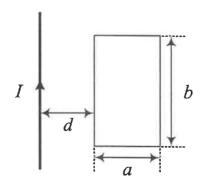



Fig. 2

- 5. (8%) Two infinite insulated conducting plates maintained at potentials 0 and  $V_0$  form a wedge-shaped configuration, as shown in Fig. 3. Determine the potential distributions for the regions:
  - (a)  $(4\%) 0 < \phi < \alpha$
  - (b)  $(4\%) \alpha < \phi < 2\pi$

#### 國立中正大學 111 學年度碩士班招生考試試題

科目名稱:電磁學

本科目共 3 頁 第 2 頁

系所組別:電機工程學系-電磁晶片組

- 6. (18%) A 75- $\Omega$  transmission line is terminated with a complex impedance  $Z_L = 45 + j60$ . Please determine:
  - (a) (3%) Is this load an inductive load or capacitive load?
  - (b) (3%) The load reflection coefficient  $\Gamma_L$ .
  - (c) (3%) The voltage standing wave ratio VSWR?
  - (d) (3%) Find the first  $V_{\min}$  position nearest to the load (in wavelength).
  - (e) (6%) To match this load, please design your matching network that includes a quarter-wavelength transformer.
- 7. (10%) In a material for which conductivity  $\sigma = 6$  S/m and  $\varepsilon_r = 4$ , the electric field intensity is  $\vec{E}(t) = 150 \sin(10^{10}t)$  (V/m). Find:
  - (a) (3%) Conductor current  $J_c$
  - (b) (3%) Displacement current  $J_d$
  - (c) (4%) The frequency (Hz) at which  $J_c$  and  $J_d$  have equal magnitude
- 8. (10%) Consider a light ray normally incidents on one side of the 45°-90°-45° right-angled prism ( $\varepsilon_r$ =2.3), and exits the prism through two reflective surfaces. Assume that due to manufacturing error, one of the angles of this prism is 46°, and the other complementary angle is 44°, as shown in Fig. 4. Determine the angle  $\theta$  where the light exits the prism. (hint:  $\sin(46^\circ)=0.719$ )

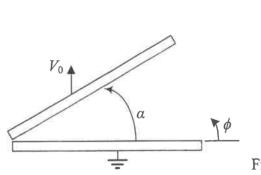



Fig. 3

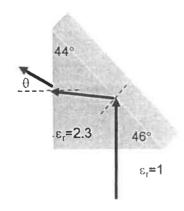



Fig. 4

- 9. (12%) Please answer the following questions:
  - (a) (4%) Will it make sense to define VSWR in a conductive medium? Cite reasons to justify your answers.
  - (b) (4%) Why is the underwater communication using EM wave so difficult? Cite reasons to justify your answers.
  - (c) (4%) The ray trace between the satellite (in space) and GPS antenna (on earth surface) is likely shown as below (Fig. 5). Why is it a curved path instead of a straight path? Cite reasons to justify your answers.

### 國立中正大學 111 學年度碩士班招生考試試題

科目名稱:電磁學

本科目共 3 頁 第 3 頁

系所組別:電機工程學系-電磁晶片組

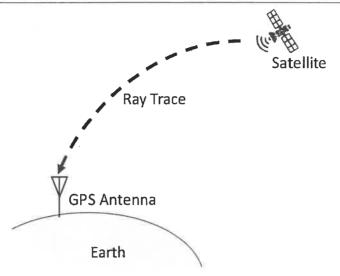



Fig. 5