國立中正大學 111 學年度碩士班招生考試

試題

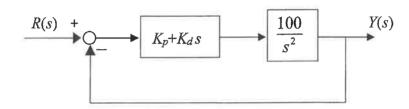
[第1節]

科目名稱	控制系統
系所組別	電機工程學系-電力與電能處理甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 111 學年度碩士班招生考試試題


科目名稱:控制系統

本科目共 1 頁 第 1 頁

系所組別:電機工程學系-電力與電能處理甲組

1. (30%) A PD control system is shown in the following figure. Construct a parameter plane of K_p versus K_d (K_p is the vertical axis) and show the following trajectories.

- (a) Trajectories on which the damping is critical.
- (b) Trajectories on which the parabolic-error constant is 1000.
- (c) Trajectories on which the system is pole-zero cancellation.

2. (50%) Given a closed-loop unity-feedback control system described by the state equations

$$\dot{x} = \begin{bmatrix} -2 & -1 & 0 \\ 0 & 0 & -1 \\ -K & 0 & -10 \end{bmatrix} x$$

- (a) Apply the Nyquist criterion to determine the range of K so that the system is asymptotically stable.
- (b) Check the answer obtained in part (a) with the Routh-Hurwitz criterion.
- (c) Construct the root locus for $K \ge 0$.
- (d) Find the value of K so that the gain margin of the system is 20 dB.
- (e) Find the value of K so that the phase margin of the system is 45° .
- 3. (20%) Given the system

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t), \quad y(t) = Cx(t)$$

where
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

- (a) Find the state-transition matrix $\phi(t)$.
- (b) Transform the state equations into the observability canonical form (OCF) and find the transformation matrix O where $x(t) = O\overline{x}(t)$.