國立成功大學 111學年度碩士班招生考試試題

編 號: 115

系 所:工程科學系

科 目: 工程力學

日期:0220

節 次:第1節

備 註: 可使用計算機

編號: 115 國立成功大學111學年度碩士班招生考試試題

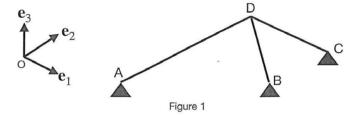
系 所:工程科學系 考試科目:工程力學

考試日期:0220,節次:1

第1頁,共4頁

*考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

工程力學共五題,請詳細撰寫計算與推導過程,並將最終答案以底線標註。


1. (20%) A three dimensional vector ${\bf a}$ can be written as follows:

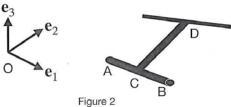
actor
$${\bf a}$$
 can be written as follows:
$${\bf a}=a_1{\bf e}_1+a_2{\bf e}_2+a_3{\bf e}_3 \quad {\rm or} \quad {\bf a}=\begin{bmatrix} a_1\\a_2\\a_3 \end{bmatrix},$$

where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are three base vectors of the Cartesian coordinate system. The frame as shown in Figure 1 is subjected to a force $\mathbf{F} = F_1\mathbf{e}_1 + F_2\mathbf{e}_2 + F_3\mathbf{e}_3$ at the vertex D. The position vectors of the vertex D and the feet A, B, C are \mathbf{x}^D , \mathbf{x}^A , \mathbf{x}^B , and \mathbf{x}^C , respectively, where

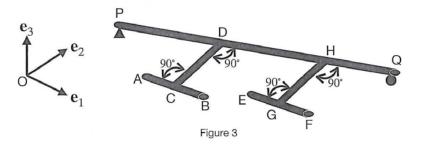
$$\begin{split} \mathbf{x}^A &= x_1^A \mathbf{e}_1 + x_2^A \mathbf{e}_2 + x_3^A \mathbf{e}_3, \\ \mathbf{x}^B &= x_1^B \mathbf{e}_1 + x_2^B \mathbf{e}_2 + x_3^B \mathbf{e}_3, \\ \mathbf{x}^C &= x_1^C \mathbf{e}_1 + x_2^C \mathbf{e}_2 + x_3^C \mathbf{e}_3, \\ \mathbf{x}^D &= x_1^D \mathbf{e}_1 + x_2^D \mathbf{e}_2 + x_3^D \mathbf{e}_3. \end{split}$$

- (a) Please determine the moment ${f M}$ of the force ${f F}$ about the point A. (10 %)
- (b) Please determine the magnitude of the components of the force parallel and perpendicular to member AD. (10 %)

第2頁,共4頁


2. (20%) Figure 2 shows a pipe assembly which is subjected two forces $\mathbf{F}^A = x_1^A \mathbf{e}_1 + x_2^A \mathbf{e}_2 + x_3^A \mathbf{e}_3$ and $\mathbf{F}^B = x_1^B \mathbf{e}_1 + x_2^B \mathbf{e}_2 + x_3^B \mathbf{e}_3$ at points A and B, respectively, and the position vectors of the collinear points A, B and C are \mathbf{x}^A , \mathbf{x}^B , and \mathbf{x}^C where

$$\mathbf{x}^{A} = x_{1}^{A} \mathbf{e}_{1} + x_{2}^{A} \mathbf{e}_{2} + x_{3}^{A} \mathbf{e}_{3},$$


$$\mathbf{x}^{B} = x_{1}^{B} \mathbf{e}_{1} + x_{2}^{B} \mathbf{e}_{2} + x_{3}^{B} \mathbf{e}_{3},$$

$$\mathbf{x}^{C} = x_{1}^{C} \mathbf{e}_{1} + x_{2}^{C} \mathbf{e}_{2} + x_{3}^{C} \mathbf{e}_{3}.$$

(a) Please determine the equivalent resultant force F_R and the resultant moment M_{RC} about the point C. (10 %)

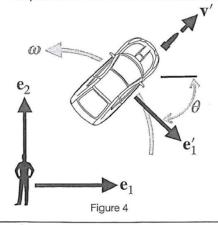
(b) Figure 3 shows two such pipe assemblies, where are subjected forces \mathbf{F}^A , \mathbf{F}^B , \mathbf{F}^E , and \mathbf{F}^F at points A, B, E, and F, respectively, are installed to a pipe PQ. If the bending moment between DH is constant, please determine the forces \mathbf{F}^A , \mathbf{F}^B , \mathbf{F}^E , and \mathbf{F}^F and the positions \mathbf{x}^A , \mathbf{x}^B , \mathbf{x}^E , and \mathbf{x}^F . (10 %)

編號: 115 國立成功大學111學年度碩士班招生考試試題

系 所:工程科學系 考試科目:工程力學

考試日期:0220,節次:1

第3頁,共4頁


3. (20 %) A motion of a particle with the mass m has the position which is the function of time as follows:

$$\mathbf{x}(t) = r\cos\omega t \mathbf{e}_1 + r\sin\omega t \mathbf{e}_2 + \alpha t \mathbf{e}_3,$$

where t denotes the time and ω , α are two constants. For this motion,

- (a) please show the velocity v, the speed ν , and the acceleration a; (5 %)
- (b) please show the arc length s and derive the curvature κ and base vectors of the natural coordinate system including the tangent vector $\mathbf{t}(s)$, the normal vector $\mathbf{n}(s)$, and the bi-normal vector $\mathbf{b}(s)$; (10 %)
- (c) please find the force F which exerts the motion. (5 %)
- 4. (20 %) A particle has a velocity $\mathbf{v}' = v_1' \mathbf{e}_1' + v_2' \mathbf{e}_2' + v_3' \mathbf{e}_3'$ measured relative to a rotated Cartesian coordinate system with angular velocity $\boldsymbol{\omega} = \omega_1 \mathbf{e}_1 + \omega_2 \mathbf{e}_2 + \omega_3 \mathbf{e}_3$, where $\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'$ are three Cartesian base vectors of the rotated coordinate system and $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are three base vectors of the fixed coordinate system.
 - (a) What is the velocity **v** of the particle measured relative to a fixed coordinate system? Please give the detail about the derivation. (5 %)
 - (b) What is the acceleration **a** measured relative to a fixed coordinate system? Please give the detail about the derivation. (5 %)
 - (c) A bullet is fired from a car with an initial velocity ${\bf v}'=\nu_2'{\bf e}_2'$ where ${\bf e}_2'$ denotes the direction of the car which rotates with $\omega=\omega_3{\bf e}_3$. What is the bullet's instantaneous velocity ${\bf v}$ and its instantaneous acceleration ${\bf a}$ expressed from the fixed coordinate system? Please detail every component of the velocity and the acceleration and please also point out the term "Coriolis acceleration." (10 %)

The position of the car and the fixed coordinate system e_i are plot in Figures 4 and 5.

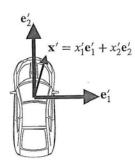


Figure 5

編號: 115

國立成功大學111學年度碩士班招生考試試題

系 所:工程科學系 考試科目:工程力學

考試日期:0220,節次:1

第4頁,共4頁

- 5. (20 %) Consider a damped vibration system with a mass m, a k-spring, and a c-damper and the equilibrium position of the mass is u=0 as shown in Figure 6. The damped vibration system locates on a car with a traveling displacement u_{g} .
 - (a) If the car is not traveling, $u_{\rm g}=0$, please find the system's equation of motion, (3 %)
 - (b) and please derive its solution of displacement u(t) for the over-damped case under the initial displacement $u(0)=u_0$ and the initial velocity $\dot{u}(0)=v_0$. (12 %)
 - (c) If the car is traveling, please find the system's equation of motion. (5 %)

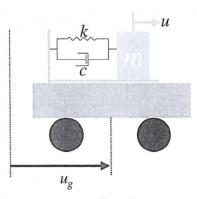


Figure 6