國立成功大學 111學年度碩士班招生考試試題

編 號: 128

系 所:系統及船舶機電工程學系

科 目: 自動控制

日 期: 0219

節 次:第2節

備 註:可使用計算機

编號: 128

國立成功大學 111 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:自動控制

考試日期:0219, 節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Consider a linear system expressed as

$$\dot{X} = AX + BU
Y = CX + DU$$
(1)

- (i) Please derive the closed-loop transfer function $G(s) = \frac{Y(s)}{U(s)}$ for Eq. (1). (10%)
- (ii) Based on Eq. (1), giving the system matrices and vectors as below: (10%)

$$A = \begin{bmatrix} -1 & -1 \\ 6 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Please find out the closed-loop transfer $G(s) = \frac{Y(s)}{U(s)}$

2. Consider the following linear system:

$$\dot{x} = Ax + Br$$

$$y = Cx$$
(2)

where $r = \frac{1}{2}t^2$ is a parabolic input.

- (i) Please present the steady-state error $e(\infty)$ based on A, B and C without using "Final value theorem". (10%)
- (ii) Using the derived result of (i), please find out the steady-state error $e(\infty)$ for the following system: (10%)

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -5 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$
(3)

國立成功大學 111 學年度碩士班招生考試試題

所:系統及船舶機電工程學系

考試科目:自動控制

考試日期:0219, 節次:2

第2頁,共2頁

3. Derive the "Separation Principle" based on the given system in Eq. (4) and explain the meaning of separation principle in the practical control design. (20%)

$$\dot{x} = Ax + Bu$$

$$y = Cx$$
(4)

Please linearize the following nonlinear system with the operating point x_{02} x_{03} x_{04} u_0] = [0 0 0 0 0]. (20%)

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = x_1^3 + 4x_2 + \sin(x_3) + 2u\cos(x_1)$$

$$\dot{x}_3 = x_4$$

$$\dot{x}_4 = 2x_1 + x_4\cos(x_2) + 3u$$

5. Find out the phase crossover frequency ω_p , the gain crossover frequency ω_g , phase margin PM and gain margin GM of the bode plot as shown in Figure 1. (20%)

Figure 1