國立成功大學 111學年度碩士班招生考試試題

編 號: 41

系 所: 光電科學與工程學系

科 目:電子學

日 期: 0220

節 次:第1節

備 註:不可使用計算機

國立成功大學 111 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0220 · 節次:1

第1頁,共3頁

编號: 41

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. A reverse-biased photodiode is specified to have a dark current of 100 pA and a responsivity of 0.5 A/W. It is connected to the transresistance amplifier shown in Fig. 1. Assume op amp is ideal. (20%)
 - (a) Please show five characteristics of ideal op amp. (10%)
 - (b) What is the output voltage ν_0 with 10 μ W of light incident on the photodiode? (10%)

Fig.

2. For the circuit shown in Fig. 2, EBJ operated at 0.7 V for Q1 and Q2, find V1, V2, and V3. (15%)

Fig. 2

3. In the circuit of Fig. 3, transistors Q_1 and Q_2 have V_1 =0.7 V, $(W/L)_1$ =1.5 $(W/L)_2$ =20, and the process transconductance parameter k_n '=125 μ A/V². Find V_1 , V_2 , and V_3 . (15%)

Fig. 3

國立成功大學 111 學年度碩士班招生考試試題

編號: 41

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0220,節次:1

第2頁,共3頁

- 4. The MOSFET (with aspect ratio of 10) in the amplifier circuit (Fig. 4) has threshold voltage (V_t) of 0.4 V, the process transconductance parameter (k_0 ') of 0.5 mA/V², and the associated value of λ of 0.02 V⁻¹. The signal V_{sig} has a zero average. (25%)
- (a) It is required to bias the transistor to operate at an overdrive voltage $V_{ov} = 0.1 \text{ V}$. What must the dc voltage at the drain be? Calculate the dc drain current I_D taking into account λ . Now, what value must the drain resistance R_D have? (3 × 3% =9%)
- (b) Calculate the values of transconductance (g_m) and output resistance (r₀) at the bias point established in (a) (2 × 3% =6%)
- (c) Derive the expression for the voltage gain (V_0/V_{sig}) using the small signal equivalent circuit of the amplifier. And find the value of the gain by using the $r_0 \sim 2 \text{ M}\Omega$. (10%)

$$V_{DD} = 10.1 \text{ V}$$

$$R_{2} = 1.5 \text{ M}\Omega$$

$$R_{I} = 0.5 \text{ M}\Omega$$

$$V_{sign}$$

Fig. 4

- 5. The circuit of Fig. 5 shows a differential amplifier. (15%)
- (a) Find the differential half-circuit for the amplifier and use it to drive an expression for the differential gain $A_{\rm d} = v_{\rm od}/v_{\rm id}$ in terms of $g_{\rm m}$, $R_{\rm D}$, and $R_{\rm S}$. Neglect the early effect.
- (b) The resistance R_S in the circuit can be implemented by using a MOSFET (Q_3) operated in the triode region. Here Q_3 implements R_S , with the value of R_S determined by the gate voltage v_{G_3} of Q_3 . Consider the case $v_{G_1} = +v_{id}/2$ and $v_{G_2} = -v_{id}/2$, where v_{id} is a small signal. Assume that Q_3 now conducts current and operates in the triode region with a small v_{DS} . What resistance r_{DS} does it have, expressed in terms of the overdrive voltage V_{ov_3} at which it is operating? This is the resistance R_S . Now if all three transistors have the same aspect ratio W/L, express R_S in terms of V_{ov_3} , and $g_{m1,2}$. (7%)

Fig. 5

编號: 41

國立成功大學 111 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0220,節次:1

第3頁,共3頁

6. The transistors in the circuit (Fig. 6) have $\beta = 100$ and $V_A = 50$ V. What is the effect of the increasing the bias currents by a factor of 10 on R_{in} and the overall voltage gain G_{v} ? (10%)

Fig. 6