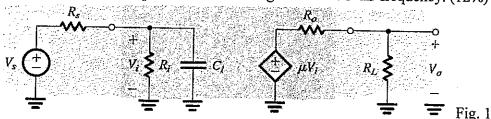
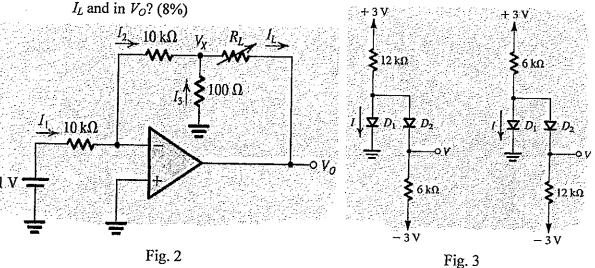
題號: 367


國立臺灣大學111學年度碩士班招生考試試題

科目:應用電子學


節次: 7

題號:367 共 2 頁之第 1 頁

1. In Fig. 1, please derive an expression for the voltage gain Vo/Vs as a function of frequency, and find expressions for the dc gain and the 3-dB frequency. (12%)

- 2. In Fig. 2, let the op amp be ideal:
 - (a) Please find I_1 , I_2 , I_3 , I_L , and V_x . (10%)
 - (b) If V_O is not to be lower than -13 V, please find the maximum allowed value for R_L . (4%)
 - (c) If R_L is varied in the range 100 Ω to 1 k Ω , what is the corresponding change in I_L and in I_L ? (8%)

- 3. Assuming that the diodes in the circuits of Fig. 3 are ideal, please find the values of the labeled currents and voltages (8%).
- 4. The NMOS transistor in the CS amplifier shown in Fig. 4 has $V_t = 0.7 \text{ V}$ and $V_A = 50 \text{ V}$. Please neglect the Early effect and find the overall voltage gain when the MOSFET is operating in saturation with $I_D = 0.5 \text{ mA}$ and $V_{OV} = 0.3 \text{ V}$. (12%)

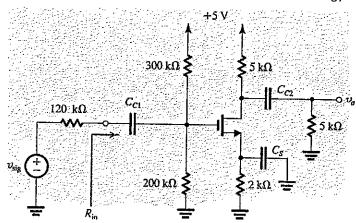


Fig. 4

題號: 367 國立臺灣大學111學年度碩士班招生考試試題

科目:應用電子學

節次: 7

5. The amplifier of Fig. 5 consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, R_{in2} , constitutes the load resistance of the first stage.

- (a) Please determine the dc collector current and dc collector voltage of each transistor for $V_{\rm CC}=15$ V, $\beta=100$, $R_1=100$ k Ω , $R_2=47$ k Ω , $R_E=3.9$ k Ω , and $R_C=6.8$ k Ω . (12%)
- (b) Please find $R_{\rm in1}$, $R_{\rm in2}$, and the overall voltage gain for $R_{\rm sig}=5~{\rm k}\Omega$ and $R_L=2~{\rm k}\Omega$. (9%)

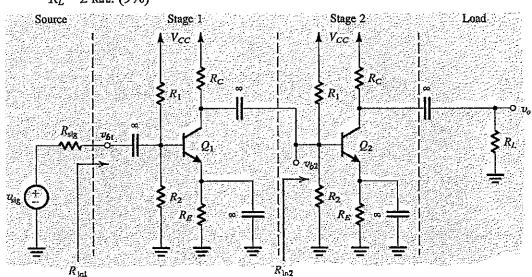
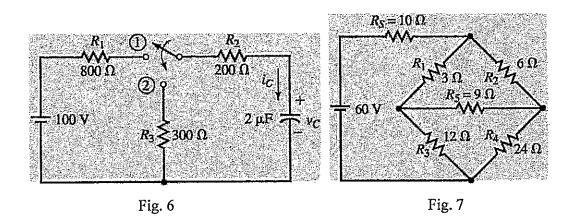



Fig. 5

- 6. The capacitor of Fig. 6 is uncharged. The switch is moved to position 1 for 10 ms, then to position 2, where it remains.
 - (a) Please determine v_C and i_C during charge. (6%)
 - (b) Please determine v_C and i_C during discharge. (6%)
 - (c) Please sketch the charge and discharge waveforms. (5%)
- 7. Please solve for the currents through R_1 and R_4 in the circuit of Fig. 7. (8%)

