題號: 223

節次:

國立臺灣大學 111 學年度碩士班招生考試試題

科目:材料熱力學

頁之第

1. Draw (a) V – T diagram, (b) enthalpy, H – T diagram, (c) chemical potential, μ – T diagram, (d) entropy, S – T diagram, and (e) heat capacity, C_p – T diagram, accompanying first-order transition. (15 %)

- 2. For 1 mol ideal gas, pV = RT
- a) Draw p V diagram at $T = T_1, 2T_1, 3T_1 (5 \%)$
- b) Draw V T diagram at $p = p_1, 2p_1, 3p_1 (5 \%)$
- c) Draw p T diagram at $v = v_1, 2v_1, 3v_1 (5\%)$
- 3. Please explain why specific heat capacity at constant pressure (C_p) is larger than specific heat capacity at constant volume (C_v)? (10 %) For ideal gas, what is $C_p - C_v$? (5 %)
- 4. For van der Waals Equation:

$$p = \frac{RT}{V_m - b} - \frac{a}{V_m^2}$$

- a) What is the physical meaning of constants a and b? (10 %)
- b) At critical point, what is T_c , V_c , p_c in terms of a and b (15 %)
- c) What is critical compression factor, Z_c ? (5 %)
- 5. What is the definition of partial molar property (5%)? What is the definition of chemical potential? (5%) Why the chemical potential is partial molar Gibbs free energy but not partial molar inner energy or partial molar enthalpy? (5%)
- 6. Convert the phase diagram from (T, a2) space as shown below to (T, X2) space. (10 %)

試題隨卷繳回