國立交通大學 101 學年度碩士班考試入學試題

科目:微分方程與線性代數(1212)

考試日期:101年2月17日 第 2節

系所班別:電機工程學系 組別:電機系

第一頁,共2頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

- 1. (15%) Please determine whether the following statements are TRUE or FALSE. No explanations are needed.
 - (a) (3%) Suppose $A\mathbf{x} = \mathbf{b}$ is a consistent system and \mathbf{v}_1 and \mathbf{v}_2 are two solutions, where A is an $m \times n$ matrix. Then $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2$ must be a solution for the homogeneous equation $A\mathbf{x} = \mathbf{0}$.
 - (b) (3%) Let A and B be $m \times n$ matrices. If $A\mathbf{x} = B\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$, then A and B are equal.
 - (c) (3%) Let A be an $n \times n$ matrix. If A is invertible, then any subset of \mathbb{R}^n formed by the columns vectors of A is linearly independent.
 - (d) (3%) Let $S = \{a_1, a_2, \dots a_k\}$ be a subset of \mathbb{R}^n and $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. When $\{T(a_1), T(a_2), \dots, T(a_k)\}$ is linear independent, S is not necessarily linearly independent.
 - (e) (3%) Let A be an $m \times n$ matrix. If the number of pivot numbers of A is less than m, then $A\mathbf{x} = \mathbf{b}$ has more than one solution.
- 2. (10%) Let W_1, W_2, \dots, W_m be subspaces of \mathbb{R}^n such that W_{i+1} is a subset of $\bigcap_{j=1}^i W_j^{\perp}$, where W_j^{\perp} is the orthogonal complement of W_j , for $i=1,2,\dots,m-1$. Suppose the orthogonal projection matrix for W_i is P_i . Determine the orthogonal projection matrix for $V=\{\mathbf{v}\in\mathbb{R}^n:\mathbf{v}=\mathbf{v}_1+\mathbf{v}_2+\dots+\mathbf{v}_m, \text{ where } \mathbf{v}_i\in W_i\}$.
- 3. (a) (8%) Find the eignevalues and eigenvectors for

$$A = \left[\begin{array}{cc} 3 & 1 \\ 2 & 2 \end{array} \right]$$

- (b) (3%) How can you tell whether a matrix is invertible from its eigenvalues?
- (c) (3%) How can you tell whether two matrices are similar from their eigenvalues?
- 4. (a) (8%) For the following matrix, find the bases for its row space and nullspace.

$$\left[\begin{array}{cccc}
1 & 1 & 2 & 2 \\
4 & 5 & 6 & 3 \\
3 & 4 & 4 & 1
\end{array}\right]$$

- (b) (3%) In \mathbb{R}^3 , is xy plane orthogonal to xz plane? Explain it.
- 5. (10%) Find the solutions y(x) to the following initial value problems
 - (a) (5%)

$$x^{2}y'(x) - 2xy(x) = 3y^{3}(x), \quad y(1) = \frac{1}{2}.$$

國立交通大學 101 學年度碩士班考試入學試題

科目:微分方程與線性代數(1212)

考試日期:101年2月17日 第 2節

系所班別:電機工程學系

組別:電機系

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

(b) (5%)

$$xy'(x) - y(x) = x^2 e^x, \quad y(0) = 0.$$

6. (10%) Consider the following second order ordinary differential equation:

$$xy''(x) - (x+2)y'(x) + 2y(x) = 0.$$

Determine the solution y(x) satisfying the conditions y''(0) = 1 and y'''(0) = 0.

7. (15%) For the following initial value problem

$$y''(t) + y(t) = f(t) = \sum_{n=0}^{\infty} u(t-n), \quad y(0) = 1, \ y'(0) = 0, \tag{1}$$

where u(t) is the unit-step function,

- (a) (5%) Find the Laplace transform of f(t) and determine its region of convergence.
- (b) (10%) Solve the above ordinary differential equation (1) for y(t).
- 8. (15%) Let x(t) be a length-3 vector of functions in t that satisfies the following system of linear differential equations:

$$\mathbf{x}'(t) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 5 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} e^{4t}, \quad \mathbf{x}(1) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Find the solution x(t).