## 國立政治大學 111 學年度 碩士暨碩士在職專班 招生考試試題

第 | 頁,共2頁

考試科目計算機數學 系所別資訊科學系 考試時間 2月 9日(三)第4節

- I. 離散數學:60%(第 1~9 題)
- II. 線性代數:40%(第10~12題)

請書寫必要的解題過程,僅提供答案而無必要過程,將無法獲得該題滿分。可使用中文或英文作答,力求 書寫工整,如字跡潦草,無法閱讀,將影響評分。

- 1. (4%) Which of the following pairs of values (n, k) (if any) make the following statement true. If 50 students are distributed into n classrooms, there must be a classroom with at least k students?
  - (a) (3, 15), (b) (70, 3), (c) (15, 3), (d) (7, 8), (e) (51, 2)
- 2. (5%) Which of the following asymptotic notation(s) is/are correct for the equation  $3N^3 \log(N) + 4N \log(N)$ ?
  - (a)  $\Theta(N^2 log(N))$ , (b)  $O(N^3)$ , (c)  $\Omega(N^2 log(N))$ , and (d)  $O(N^3 log(N^2))$ .
- 3. (5%) If A and B are disjoint events, and P(A) = 0.4 and P(B) = 0.2, what is P(B|A)?.
- 4. (6%) Please use a recursion tree to determine a good asymptotic upper bound on the recurrence

$$T(n) = 3T(\left\lfloor \frac{n}{2} \right\rfloor) + n$$

- 5. (4%) Please prove that n(n+1)(n+2) is divisible by 3 using mathematical induction.
- 6. (10%) Suppose that the two continuous random variables X and Z are statistically independent. Please prove that the mean and variance of their sum satisfy (please use definition of the expected value and variance):
  - (a) (5%) E[X + Z] = E[X] + E[Z],
  - (b) (5%) Var[X + Z] = Var[X] + Var[Z].
- 7. (6%) Please prove  $222|(2^a-2^b)$  for some positive integers, a and b.
- 8. (10%) Solve the recurrence relation  $a_n = 5a_{n-1} 6a_{n-2}$ , for  $n \ge 2$ ,  $a_0 = 1$ ,  $a_1 = 0$ .
- 9. (10%) Find the set of all solutions x to the system of two congruences below:

$$7x \equiv 14 \pmod{6}$$
 and  $5x \equiv 3 \pmod{6}$ .

- 10. (5%) True or false.
  - (a) If a rectangle matrix A is invertible, A could have a zero singular value.
  - (b) If a matrix B is similar to A, then B has the same eigenvectors as A.
  - (c) Any symmetric matrix is similar to a diagonal matrix.
  - (d) Any matrix which is similar to a diagonal matrix is symmetric.
  - (e) Every positive definite matrix is nonsingular.
- 11. (15%) Suppose a rectangle matrix A has full rank.
- (a) (4%) Please derive the best square solution  $\tilde{x}$  to Ax = b step by step.
- (b) (6%) Which fundamental subspace associated with A is the projection vector p in, where  $p = A\tilde{x}$ ? Which

## 國立政治大學 111 學年度 碩士暨碩士在職專班 招生考試試題

第 2 頁,共2頁

考 試 科 目計算機數學

系 所 別資訊科學系

考試時間 2月9日(三)第4節

fundamental subspace is p - b in then?

- (c) (5%) Find the projection matrix P onto the column space of  $A = \begin{bmatrix} 1 & 0 \\ 3 & 0 \\ 0 & -1 \\ 0 & -3 \end{bmatrix}$ .
- 12. (20%) Given a recurrence relation:  $(M^TM + 4I)x_{n+1} = (M^TM 4I)x_n$ , where  $M \in \mathbb{R}^{5\times 3}$  (a real  $5\times 3$  matrix) and n is a positive integer.
  - (a) (5%)Let  $x_n = A^n x_0$ . Please find out A (independent of any  $x_i$ ,  $i \in N \cup \{0\}$ )
  - (b) (5%) Let  $\lambda$  be an eigenvalue of  $M^TM$ , corresponding to the eigenvector  $\lambda$ . Please find an eigen pair of A. (an eigen pair means an eigenvector and its associated eigenvalue)
  - (c) (5%) Given all the information above, choose all the possible behaviors of  $x_n$  for a large n from (1) decaying to zero, (2) oscillating but not growing or decaying in length, (3) going to a nonzero constant vector, and (4) going to a nonzero constant vector. Explain your answers by discussing A's eigenvalue.
  - (d) (5%) If  $x_1 = 0$  for a nonzero  $x_0$ , please find one singular value of M.



註