共__10__頁,第__1__頁 *請在【答案卷】作答

系所班組別:生命科學院乙組、醫學生物科技學程 考試科目(代碼):有機化學(0502、0706)

單	選題	•						(20%, 2% each		
1.	Which of the following species behaves as a nucleophile?									
	(A)	CH_4	(B)	H^+		(C)	H_2	C		
	(D)	Fe ³⁺	(E)	Br^{+}						
2.	What is the net charge of the peptide Arg-Phe-Gly-Lys-Glu at pH 7?									
	(A)	+2	(B)	+3		(C)	-2			
	(D)	+1	(E)	-3						
3.	Which of the following chromatography is suitable for separation of proteins with charges?									
	(A)	exclusion	(B)	size		(C)	affi	nity		
	(D)	ion exchange	(E)	gel	filtration					
4.	Which of the following terms is equal to the pH at the midpoint of an acid/base titration?									
	(A) The pK of the corresponding acid									
	(B) The pK of the corresponding base									
	(C) 14 minus the pK of the corresponding acid									
	(D) 14 plus the pK of the corresponding base									
	(E)	None of the above								
5.	Which of the following chromatography is suitable for separation of proteins wit charges?									
	(A)	exclusion		(B)	size		(C)	affinity		
	(D)	ion exchange		(E)	gel					

系所班組別:生命科學院乙組、醫學生物科技學程 考試科目(代碼):有機化學(0502、0706)

考	試科目(个	に飾り・角機化	字(U.	302 \ 0700)					
6.	82 g of a c	compound was co		共10頁,第 tely burned in					
	1	ere 17.1 g of contractions of contractions are given by the second contractions are second contractions.		oon dioxide and 10.5 g of water. What pound?					
	(A) C_nH_{2n-1}	2	(B)	C_nH_{2n}	(C)	C_nH_{2n+2}			
	(D) C_nH_{2n})	(E)	$C_nH_{2n+2}O$					
7.	_	ht is passed thro							
	(A) violet		(B)	green	(C)	orange			
	(D) yellow	√	(E)	red					
p.	What is the name of compound $CH_2=CH-CH_2-B(CH_3)_2$?								
	(A) boroxi	ine	(B)	borazine	(C)	allyldimethy	lborane		
	(D) 1,1-di	methylborane	(E)	dimethylami	nodim	ethylborane			
9.	I. (C ₆ H ₅) ₄ S III. CH ₃ SiH ₂	es of the following siles tetraphenylsiles of the following siles of	ane	II. (CH ₃) ₃ Si IV. (C ₆ H ₅) ₂ S	OSiH3 Si(OH)	siloxytrime diphenyls	ethylsilane		
10.	(Z). Z real		and is	s then treated	d with	Mg. Addi	ition of CO the structura		
	(D) CH_3CH_2	CH ₂ OH	(E) C	CH ₃ CH ₂ CH ₂ C	CH_2CO	OH			

系所班組別:生命科學院乙組、醫學生物科技學程

考試科目 (代碼): 有機化學(0502、0706)

共_10_頁,第_3_頁 *請在【答案卷】作答

複選題:

(10%. 2% each)

- 1. Which of the following species is amphoteric?
 - $(A) H_2O$
- $(B) NH_2$
- (C) NH_4^+

(D) Cl⁻

- (E) HF
- 2. Which of the following species is chiral?

- 3. Which of the following statements is correct?
 - (A) There are two broad classes of sterroisomers.
 - (B) Achiral molecules cannot possess chiral centers.
 - (C) A reaction catalyzed by an enzyme always gives an optically active product.
 - (D) Racemization of an enantiomer must result in breaking of at least one bond to the chiral center.
 - (E) An attempted resolution can distinguish a racemate from a meso compound.
- 4. Which of the following statements is correct?
 - (A) All substances with chiral atoms are optically active and resolvable.
 - (B) Enantiomers possible in molecules that do not have chiral carbon atoms.
 - (C) A prochiral carbon can be primary or tertiary.
 - (D) Conformational enantiomers can be resolved.
 - (E) All molecules with stereogenic centers are chiral.

系所班組別:生命科學院乙組、醫學生物科技學程

考試科目 (代碼): 有機化學(0502、0706)

5. Which of the following compounds show R configuration?

$$H_3C-C$$
 H_2
 CH_3
 H_3C-C
 H_4
 H_5
 C
 CH_3
 H_5
 C
 CH_3
 H_5
 C
 CH_3
 $CH_$

填充題 (<u>36%</u>, <u>2 each</u>)

1. Please draw the structural formula of the principal organic compound formed in each of the following reactions.

(1)
$$CH_{2}-CH_{2}$$

$$CH_{2}-CH_{2}+Zn \text{ in alcohol}$$

$$CH_{3}-C-CH_{3}+CH_{3}COO$$

$$CH_{3}-C-CH_{3}+CH_{3}COO$$

$$CH_{3}-C-CH_{3}+CH_{3}COO$$

- 2. What are the major products of each reaction with following compound?
 - i. Bromine in CCl₄
 - ii. OsO₄, then NaHSO₃
 - iii. 3-chloroperbenzoic acid, then aqueous acid
 - iv. H_2/Pt

系所班組別:生命科學院乙組、醫學生物科技學程

考試科目(代碼):有機化學(0502、0706)

3. Please provide the requested products or reagents.

(1)

系所班組別:生命科學院乙組、醫學生物科技學程

考試科目(代碼):有機化學(0502、0706)

(3) $A \qquad \qquad hv \qquad \qquad H \qquad A \qquad \qquad B$

簡答題 (20%, 5% each)

- 1. The pKa values for side chain amino groups of Histidine, Lysine and Arginine are 6.0, 10.5 and 12.5 respectively.
 - (a) In physiological condition, which of them are protonated and which are not?
 - (b) Which one of the three are the most 'basic'?

< Show your calculation in detail>

系所班組別:生命科學院乙組、醫學生物科技學程

考試科目(代碼):有機化學(0502、0706)

- 2. The frequency of absorption bands on IR spectrum is presented by wavenumbers $\tilde{\upsilon} = \frac{1}{2\pi c} \left(\frac{k}{\mu}\right)$ (cm⁻¹) where c is the speed of light, k is the binding strength between two atoms, and μ is the reduced mass. Here $\mu = m_1 m_2 / (m_1 + m_2)$ where m_1 and m_2 are the masses of the two atoms. The side chain of Serine has a function group –OH and that of Cysteine has a function group -SH. Let's assume –OH and –SH have the same bond strength, which group has a higher wavenumber and explain why? Show your calculation in detail>
- 3. Nicotinamide adenine dinucleotide (NAD⁺) is an important coenzyme for cell metabolism. It oxidizes metabolites according to particular cellular needs which result in a reduced form of NAD⁺, NADH. Now let us study NADH in absorption spectra. If 20.8% of the 340-nm radiation incident on a given solution of NADH is transmitted and if the extinction coefficient of NADH at 340 nm is 6.22 x 10⁶ cm²*mol⁻¹, what is the concentration of NADH in the solution? (The path length is 1 cm.) < Show your calculation in detail>
- 4. What is the Total, Translational, Rotational and Vibrational degrees of freedom for the amino acid (a) glycine NH₃-CH₂-COO and (b) valine? In one of the normal modes glycine atoms vibrate as shown below.

(c) Is this mode infrared-active?

系所班組別:生命科學院乙組、醫學生物科技學程

考試科目 (代碼): 有機化學(0502、0706)

共 10 頁,第 8 頁 *請在【答案卷】作答

光譜題 <u>Describe details</u> in each structural determination step. (14%, 7% each)

1. An unknown compound X (containing only carbon, hydrogen, and oxygen) has m/z = 172 (M+) and 115, and its ¹³C NMR spectrum below. When treated with lithium aluminum hydride in ether, a single compound Y is produced, and its ¹H NMR spectrum is given below. In the space below the NMR spectra at the bottom of the page, draw the structures of X and Y. Circle your final answers and clearly indicate which is compound X and which is compound Y.

系所班組別:生命科學院乙組、醫學生物科技學程

考試科目 (代碼): 有機化學(0502、0706)

2. A compound has molecular formula C₉H₈O₄. Deduce its molecular structure from the following infrared, proton NMR and carbon NMR spectra.

系所班組別:生命科學院乙組、醫學生物科技學程

考試科目 (代碼): 有機化學(0502、0706)

共__10__頁,第__10__頁 *請在【答案卷】作答

