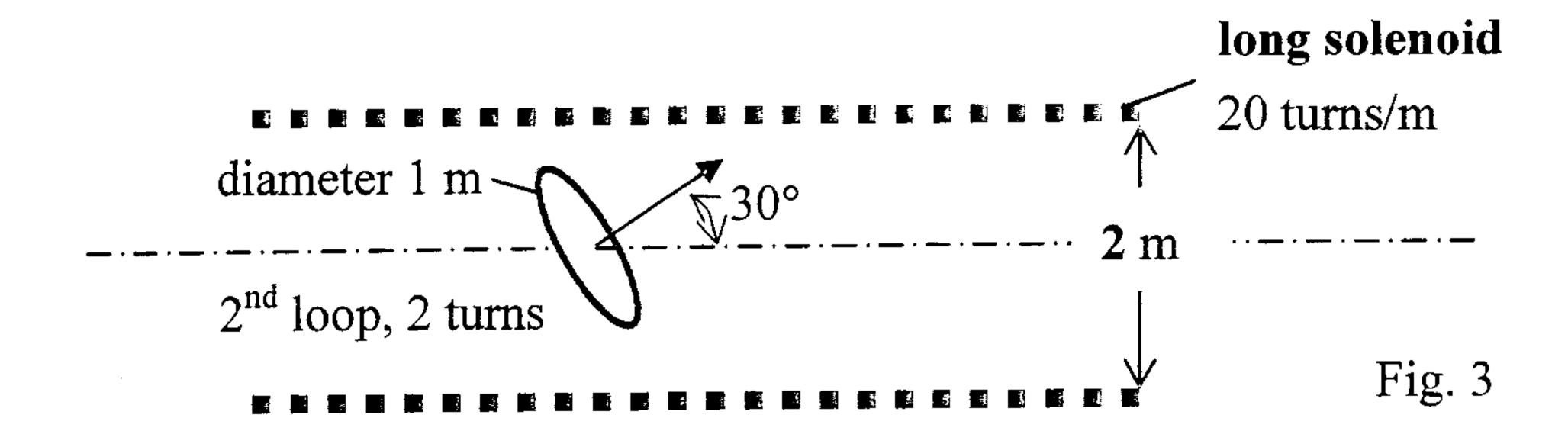

系所班組別:工程與系統科學系碩士班 丙組 先進光學科技碩士學位學程 工程與系統科學組

考試科目(代碼):電磁學(9803)

- 1. Consider a capacitor formed by two large perfect conducting plates and two dielectric slabs (dielectric constant $\varepsilon_r = 2$, thickness d, spacing t), all in parallel, as shown in Fig. 1 (cross sectional view). If two *surface charges* of densities, σ and $-\sigma$ are placed on one side of the dielectric surfaces (see Fig. 1, marked in dashed line) and the two conducting plates are held at the same electric potential, e.g, V_0 ,
 - (a) find the electric fields (in terms of d, t, σ , V_0 , etc) in each region between the conductors, (neglect the fringing field effect) (10 %)
 - (b) find the surface charge densities on the two conductors. (5 %)

- 2. Consider an electron with a velocity, at time t = 0 sec, $\vec{v}(t = 0) = 1.0\hat{y} + 1.0\hat{z}$ m/sec.
 - (a) If the electron is placed in a uniform magnetic field, $\vec{B} = 0.5 \ \hat{z} \ T$, find electron trajectory (mathematical expression and/ or description) for t > 0. (5 %)
 - (b) If the electron is immersed in static *electric* and *magnetic* fields, $\vec{E} = 0.5 \ \hat{y} \ \text{V/m}$, $\vec{B} = 0.1 \ \hat{y} \ \text{T}$, respectively, find the *work done per unit time* on the electron by the fields (at t = 0 sec).
 - (c) If the electron is initially at rest ($\vec{v}(t=0)=0$ m/sec) and it is placed in a region having an electric field \vec{E} // \hat{z} , and a magnetic field, \vec{B} // \hat{x} , both are uniform, as shown in Fig. 2, find electron trajectory (mathematical expression and/or description) for t > 0. (derivation not needed, explain your answer) (5 %)



系所班組別:工程與系統科學系碩士班 丙組 先進光學科技碩士學位學程 工程與系統科學組

考試科目(代碼):電磁學(9803)

- 3. (a) Consider a **long solenoid** (20 turns/m) of diameter 2 m, as shown in Fig. 3. Find the *energy per unit length* stored in the solenoid if a dc current of 1.0 A (per turn) is passed in the wire.
 - (b) In Fig. 3, if a 2nd wire loop having a winding of 2 turns (diameter 1.0 m) is placed at the center of the solenoid and oriented at angle 30° with respect to the solenoid axis, find the *mutual inductance* between the solenoid and the 2nd wire loop.

 (5 %)

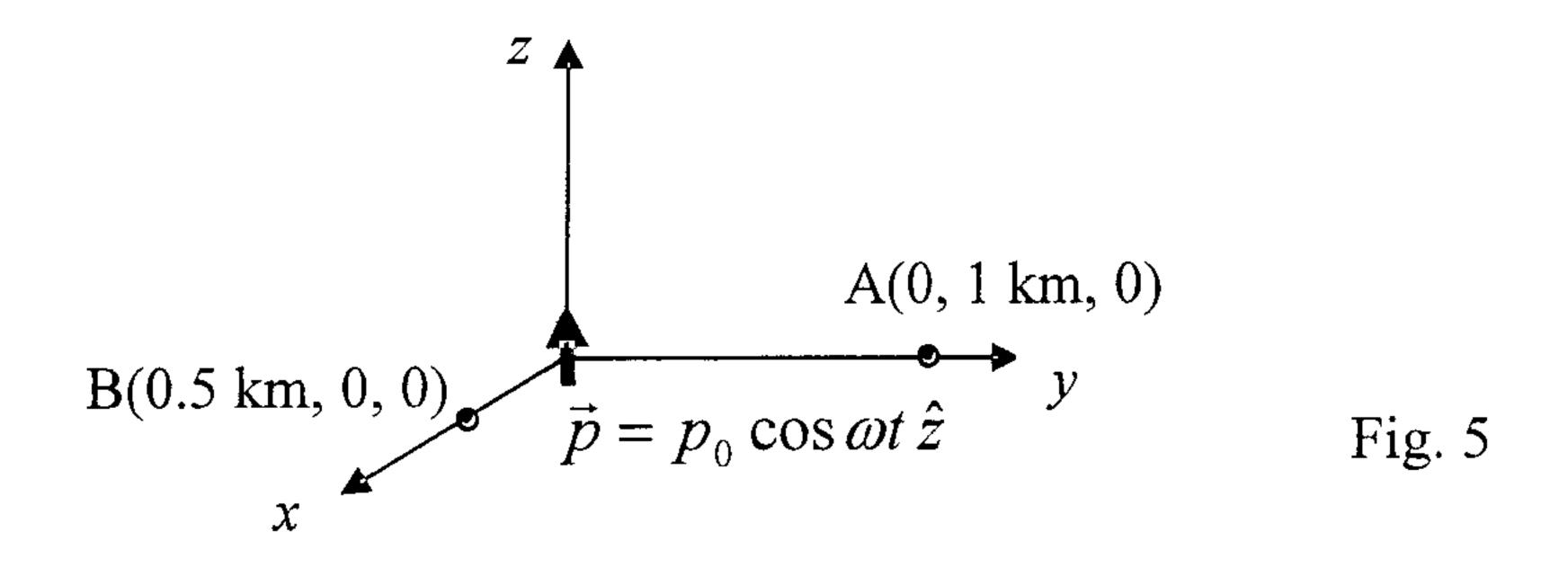
- 4. (a) In a "good conductor" of *conductivity* $\sigma = 1.5 \times 10^{-4}$ S/m, what would be the density of power dissipated in the conductor if the electric field strength is E = 2.0 V/m.
 - (b) Consider a *sinusoidal* plane electromagnetic wave propagating in a medium of refraction index n = 1.5 with a wave vector, $\vec{k} = 1.0\hat{x}$ m⁻¹. The corresponding *magnetic* field has an amplitude $B_0 = 1.0 \times 10^{-6}$ T and a direction \vec{B} // \hat{y} , write down the mathematical (spatial and temporal dependence) of the corresponding electric field, $\vec{E}(\vec{r},t)$. (10%)

系所班組別:工程與系統科學系碩士班 丙組 先進光學科技碩士學位學程 工程與系統科學組

考試科目(代碼):電磁學(9803)

- 5. A dielectric sphere of radius R and dielectric constant ε_d is placed in a medium of dielectric constant ε_p and immersed in an uniform external electric field, $\vec{E}_0 = E_0 \hat{z}$, as shown in Fig. 4. By solving the Laplace equation (in spherical coordinates, see "useful information" below), find
 - (a) the electric field distribution inside the sphere (r < R), (10 %)
 - (b) the total induced electric dipole moment of the dielectric sphere. (5 %)

Fig. 4 $\hat{E}_0 = E_0 \hat{z}$ dielectric sphere


Useful information: general solution for the Laplace equation in spherical coordinates (with azimuthal symmetry):

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_{l} r^{l} + \frac{B_{l}}{r^{l+1}} \right) P_{l}(\cos \theta)$$
 (1)
$$\int_{-1}^{1} P_{l}(x) P_{l'}(x) dx = \int_{0}^{\pi} P_{l}(\cos \theta) P_{l'}(\cos \theta) \sin \theta d\theta = \begin{cases} 0, & \text{if } l' \neq l \\ \frac{2}{2l+1}, & \text{if } l' = l \end{cases}$$
 (2)

系所班組別:工程與系統科學系碩士班 丙組 先進光學科技碩士學位學程 工程與系統科學組

考試科目(代碼):電磁學(9803)

- 6. Consider electric *dipole radiations*, i.e., radiations generated by a sinusoidally oscillating *electric dipole* and under the "approximations", $d << \lambda << r$, where d, λ , and r being the *dipole size*, wavelength and distance from the dipole (to the observer),
 - (a) for the electromagnetic radiations in the *far field zone* from an oscillating electric dipole pointing along the z-direction, $\vec{p} = p_0 \cos \omega t \,\hat{z}$, and located at the origin (0, 0, 0), (in Cartesian coordinates), as shown in Fig. 5.
 - (i) qualitatively plot the intensity patterns (or radiation pattern, 2D polar plots of $I(\theta)$ in "E" and "H" planes,). Note that you would need to define your "E" and "H" planes in the answer. (5 %)
 - (ii) what are the "directions" of the electric and magnetic fields, as well as the Poynting vector of the radiation, (give your answer in spherical coordinates unit vectors, $\hat{r}, \hat{\theta}, \hat{\phi}$) (5%)
 - (b) if the *frequency* of the time varying electric dipole in (a) is f = 500 MHz and the *radiation intensity* (time averaged power density) measured by an observer located at position \vec{A} (0, 1 km, 0) is 1 mW/m², then what would be the *radiation intensity* at position \vec{B} (0.5 km, 0, 0), if the *strength* of the oscillating dipole increases from p_0 to $2p_0$ while its *frequency* is changed from 500 MHz to 250 MHz?

系所班組別:工程與系統科學系碩士班 丙組 先進光學科技碩士學位學程 工程與系統科學組

考試科目(代碼):電磁學(9803)

共__5__頁,第__5__ *請在【答案卷、卡】作答

- 7. Consider electromagnetic waves propagating (along +z direction) in a waveguide with a uniform cross section.
 - (a) If the waveguide is formed by two parallel rods of *perfect conductors* as shown in Fig. 6(a), can TEM (transverse electromagnetic) wave propagate in this waveguide (in the space between the two conductors)? Explain your answer. Give an example with a different cross section structure where the TEM wave *can not* propagate. Please explain your answer. (5 %)
 - (b) For the **TM** modes in a *air*-filled *rectangular waveguide* formed by *perfect* conductors of width a and height b (waveguide aligned along the z-axis), as shown in Fig. 6(b), qualitatively plot the "dispersion relation", i.e., $k(\omega)$ or ω vs kc (c being speed of light in vacuum). Mark the cutoff frequency, ω_{cutoff} , on the plot and explain its physical meaning (what happen to the wave, if $\omega > \omega_{cutoff}$, and/or if $\omega < \omega_{cutoff}$). (5%)
 - (c) From (b), which one, phase velocity (v_{ph}) , or group velocity (v_g) , that is higher than the speed of light? Explain your answer. Both phase and group velocities are frequency dependent, i.e., $v_{ph}(\omega)$ and $v_g(\omega)$, respectively. What is the minimum value of the group velocity (and occurring at what frequency, $\omega / \omega_{cutoff} = ??$)?

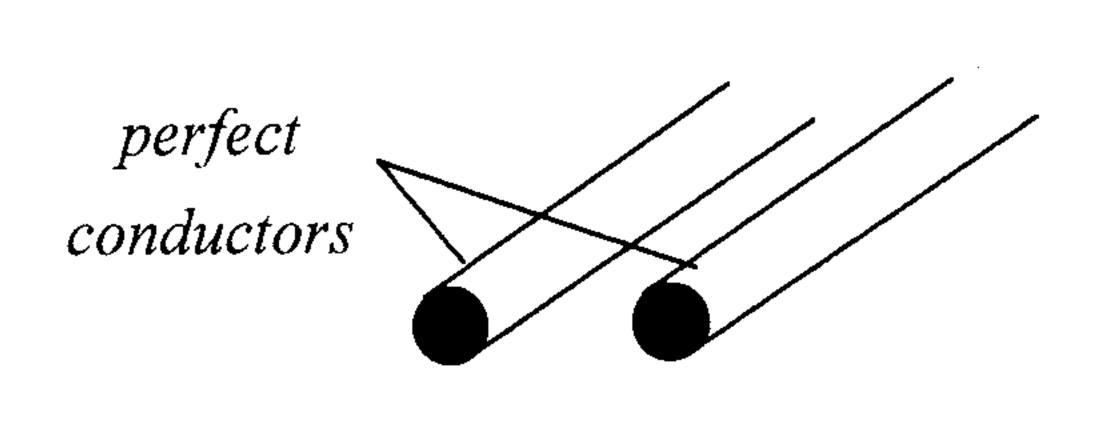


Fig. 6 (a)

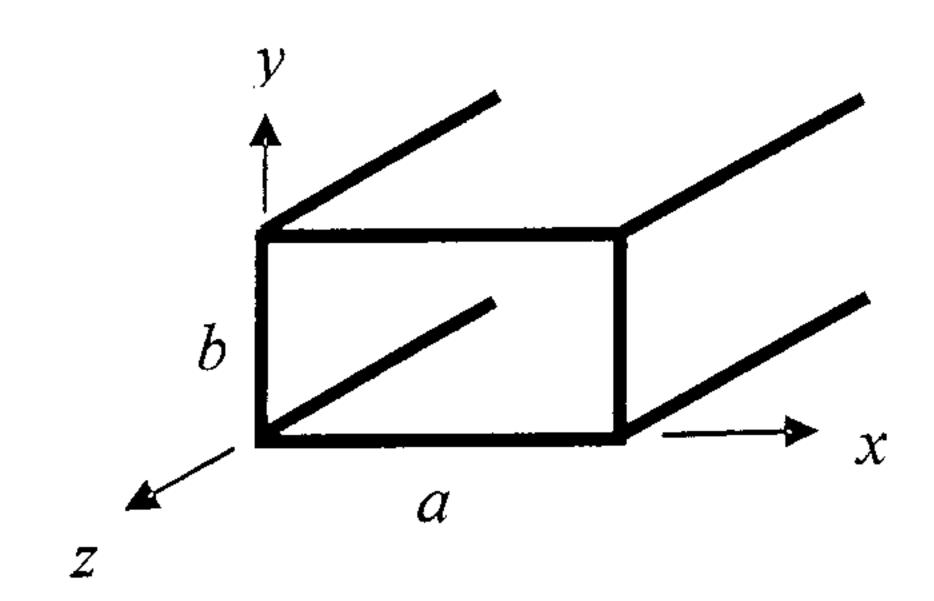


Fig. 6 (b)