系所班組別:工程與系統科學系碩士班 甲組

考試科目(代碼):材料熱力學(2502)

共_4__頁,第__1__頁 *請在【答案卷、卡】作答

1. Consider an isolated system consisting of a kilogram of lead and a kilogram of water illustrated below. (13%)

Figure: Isolated system illustrated before and after

The heat capacity of 1 kilogram of Pb is given by C_{Pb} ; the heat capacity of 1 kilogram of water is given by C_{H2O} ; all other heat capacities in the isolated system can be neglected. C_{Pb} and C_{H2O} may be considered independent of any constraints (e.g., constant pressure or constant volume) and to be independent of temperature.

- (a) Derive an expression for the final temperature after a process leading to the figure on the right of the illustration.
- (b) Would the temperature be larger or smaller if the block of lead had fallen to the left (i.e., into the water)? Pleae justify your answer.
- 2. The initial state of one mole of a monatomic ideal gas is P=6.24 atm and T=568K. Now the gas is allowed to expand freely and adiabatically from 1/3 of the volume to fill the entire container. Compute the followings: (18%)
 - (a) the change in pressure and temperature.
 - (b) the change in internal energy (U) and enthalpy (H) between the initial state and final state.
 - (c) the change in Gibbs free energy (G) and entropy (S) between the initial state and final state.

系所班組別:工程與系統科學系碩士班 甲組

考試科目(代碼):材料熱力學(2502)

共_4__頁,第_2__頁 *請在【答案卷、卡】作答

- 3. For the binary phase diagram given below, please answer the following questions. (30%)
 - (a) List the components in the phase diagram.
 - (b) Fill in the phases in the region A, B and C.
 - (c) What is the eutectic composition and eutectic temperature?
 - (d) draw schematics of plausible moalr free energy curves showing the common tangent construction at 1100°C.
 - (e) draw schematics of chemical potentials of the two components, μ_{Si} and μ_{Ag} , as a function of composition, X_{Ag} , at 1100°C.
 - (f) Calculate the Gbbs free energy of the eutectic melt relative to unmixed liquid Si and liquid Ag.

系所班組別:工程與系統科學系碩士班 甲組

考試科目(代碼):材料熱力學(2502)

共__4__頁,第__3__頁 *請在【答案卷、卡】作答

4. Pure Nickel exists in two solid forms α –Ni (fcc) and β –Ni (bcc) with the transition at T $_{\alpha \to \beta}$ = 630 K at atmospheric pressure. β –Ni melts at T_m =1728 K. The enthalpy of formation of α –Ni at 198 K is $\Delta H_{\alpha,0}$ = 0 J/mole. The entropy of formation of α –Ni at 298 K is $\Delta S_{\alpha,0}$ = 29.8 J/moleK. The heat capacitenies of the solid forms are given below. You could refer Table 1 for the enthalpy of β –Ni at the melting temperature, $\Delta H_{\beta, m}$. (14%)

$$C_{p,\alpha} = 32.6 - 1.97 \times 10^{-3} \text{ T} - 5.586 \times 10^{5} \text{ T}^{-2}$$
 $C_{p,\beta} = 29.7 + 4.18 \times 10^{-3} \text{ T} - 9.33 \times 10^{5} \text{ T}^{-2}$

- (a) Calculate the enthalpy of transformation $\Delta H_{\alpha \to \beta}$ and $\Delta S_{\alpha \to \beta}$,
- (b) Calculate the entropy of transformation $\Delta H_{\alpha \to \beta}$ and $\Delta S_{\alpha \to \beta}$.
- 5. For the reaction $CO_{(g)} + 1/2 O_{2(g)} \leftrightarrow CO_{2(g)}$. (25%)
 - (a) The total pressure at equilibrim is P_T , and the partial pressures of CO_2 and CO are P_{CO_2} and P_{CO} , respectively. Write dwon a general expression for the partial pressure of oxygen, P_{O_2} , at equilibrium using the conecpt of the equilibrium constant and its relation to the free energy of reaction, ΔG_{rea} .
 - (b) For a fixed P_{CO2}/P_{CO} ratio, make plots that show the relation between (i) P_{O2}, and P_T, and (ii) P_{O2} and T. You are required to clearly label the value of slop and intercept in the figures.
 - (c) For a general reaction beginning with n_{CO2}, n_{O2} and n_{CO} moles of the substances, write down an expression for the reaction constant in terms of the final number of moles of O₂, x.

系所班組別:工程與系統科學系碩士班 甲組

考試科目(代碼):材料熱力學(2502)

共__4___頁,第__4___頁 *請在【答案卷、卡】作答

Atmosphere 1 atm = 1.01325 bar = 101.325 kPa

Gas constant R = 8.3144 joules/degree-mole=82.06 cm³-atm/degree-mole

Boltzmann's constant $k = 1.38054 \times 10^{-23}$ joules/degree

Table 1 Molar heats of melting and transformation

Substance	Trans	ΔH_{trans} , J	T _{trans} , K
Ag	s1	11090	1234
Al	s→1	10700	934
Au	s-→1	12600	1338
Cu	s→1	12970	1356
Si	s-→1	50200	1685
Ni	s→1	17150	1728
Bi	s→l	10900	544