國立嘉義大學 101 學年度
 應用數學系碩士班（甲組）招生考試試題

科目：線性代數

說明：本考試試題為計算，證明題，請標明題號，同時將過程作答在「答案卷」。

1．Compute the symmetric $L D L^{T}$ factorization of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ ．

2．Find the determinant of $A=\left(a_{i, j}\right)$ ，if $a_{i, j}=i+j$ for $i, j \in\{1,2, \cdots, n\}$ ．（10\％）

3．Let A be an $m \times n$ matrix over \mathbb{R} ，prove that $\operatorname{rank}(A) \leq m$ and $\operatorname{rank}(A) \leq n$ ．（ 10% ）

4．Prove that $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 4\end{array}\right)$ and $B=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right)$ are similar．（10\％）
5．Let V be a vector space of dimension 2 ．We say that a linear map $T: V \rightarrow V$ is self－adjoint if $\langle T(v), w\rangle=\langle v, T(w)\rangle$ ．
（1）Suppose that $\left\{v_{1}, v_{2}\right\}$ is an orthonormal basis for V and $T: V \rightarrow V$ is a self－adjoint linear map．Show that the matrix of T relative to that basis is symmetric．（15\％）
（2）Assume that $f: V \times V \rightarrow R$ is a map defined by $f(v, w)=\langle T(v), w\rangle$ where T is a self－adjoint linear map．Show that f is a bilinear symmetric form of V ．（ 15% ）

6．Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 4\end{array}\right), y=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ ．Find $\min _{x \in \mathbb{R}^{2}}\|A x-y\|$ ．

7．In \mathbb{R}^{4} ，let $w_{1}=(1,0,1,0), w_{2}=(0,1,0,1), w_{3}=(1,0,0,0)$ ．Prove that $\left\{w_{1}, w_{2}, w_{3}\right\}$ is linearly independent．Use the Gram－Schmidt process to compute the orthogo－ nal vectors v_{1}, v_{2} and v_{3} such that $\operatorname{span}\left\{w_{1}, w_{2}, w_{3}\right\}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$ and then normalize these vectors to obtain an orthonormal set．（15\％）

