國立嘉義大學 101 學年度

應用數學系碩士班(甲組)招生考試試題

科目:線性代數

說明:本考試試題為計算、證明題,請標明題號,同時將過程作答在「答案卷」。

- 1. Compute the symmetric LDL^{T} factorization of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. (10%)
- 2. Find the determinant of $A = (a_{i,j})$, if $a_{i,j} = i + j$ for $i, j \in \{1, 2, \dots, n\}$. (10%)
- 3. Let *A* be an $m \times n$ matrix over \mathbb{R} , prove that $rank(A) \le m$ and $rank(A) \le n$. (10%)
- 4. Prove that $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ are similar. (10%)
- 5. Let V be a vector space of dimension 2. We say that a linear map $T: V \to V$ is self-adjoint if $\langle T(v), w \rangle = \langle v, T(w) \rangle$.
 - (1) Suppose that $\{v_1, v_2\}$ is an orthonormal basis for V and $T: V \to V$ is a self-adjoint linear map. Show that the matrix of T relative to that basis is symmetric. (15%)
 - (2) Assume that $f: V \times V \to R$ is a map defined by $f(v, w) = \langle T(v), w \rangle$ where *T* is a self-adjoint linear map. Show that *f* is a bilinear symmetric form of *V*. (15%)

6. Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
. Find $\min_{x \in \mathbb{R}^2} ||Ax - y||$. (15%)

7. In \mathbb{R}^4 , let $w_1 = (1,0,1,0)$, $w_2 = (0,1,0,1)$, $w_3 = (1,0,0,0)$. Prove that $\{w_1, w_2, w_3\}$ is linearly independent. Use the Gram-Schmidt process to compute the orthogonal vectors v_1 , v_2 and v_3 such that $span\{w_1, w_2, w_3\} = span\{v_1, v_2, v_3\}$ and then normalize these vectors to obtain an orthonormal set. (15%)