國立嘉義大學 114 學年度

財務金融學系碩士班招生考試試題

科目:統計學(可使用工程用計算機)

一、選擇題(每題2分,共50分)※請依下列格式標明題號並依序作答

1.	2.	3.	4.	5.
6.	7.	8	依此類.	推

1	下列	哪一	種抽棒	影方 :	法屬	於機	率抽樣	?
---	----	----	-----	-------------	----	----	-----	---

(A)便利抽樣

(B)配額抽樣

(C)分層抽樣

(D)判斷抽樣

2. 預估未來六個月房屋銷售會增加的機率為 0.25,房屋貸款利率上升的機率為 0.74,房屋銷售或貸款利率上升的機率為 0.89。那麼,未來六個月房屋銷售會增加但貸款利率不會上升的機率為:

(A) 0.065

(B) 0.15

(C) 0.51

(D) 0.89

3. 某公司有兩台生產零件的機器。一台舊機器的瑕疵率為 23%,而新機器的瑕疵率僅為 8%,且 新機器的生產量是舊機器的三倍。若隨機選取一個瑕疵零件,求該零件由新機器生產的機率:

(A) 0.08

(B) 0.15

(C) 0.489

(D) 0.511

4. 設 X 表示下一位學生到達大學圖書館停車場的時間,該到達時間可用平均值為 4 分鐘的指數分布建模。求下一位學生到達時間超過 10 分鐘的機率:

(A) 0.9179

(B) 0.6703

(C) 0.3297

(D) 0.0821

5. 從某產品族群中抽取 n=50 的樣本,記錄每個樣本的重量 X。根據過往經驗,該重量的分布具有 $\mu=6$ 公斤和 $\sigma=2.5$ 公斤。若樣本數 15,下列關於樣本平均數的分布何者正確?

(A) 樣本平均數分布的均值為 6 公斤

(B) 樣本平均數分布的標準差為 2.5 公斤

(C) 樣本平均數分布的形狀接近正態分布 (D)以上皆是

6. 某樣本數為 100 的平均值標準誤為 30。若將平均值標準誤減半至 15,則樣本量需調整為:

(A) 200

(B) 400

(C) 50

(D) 25

7. 某研究使用 90%信賴區間估計統計學學生中女性的比例。69 名學生的隨機樣本產生了信賴區間 (0.438, 0.642)。若想在 95%信賴水準下將估計誤差縮小至±0.08,約需多少樣本量?

(A) 100

(B) 160

(C) 200

(D) 250

8. 若某檢定的型一錯誤 (Type I Error) 機率要降低,且樣本數固定,則:

(A)型二錯誤(Type II Error)也會減少

(B)型二錯誤會增加

(C)檢定的檢定力(Power)會提高

(D)必須使用單尾檢定

9. 若某檢定的顯著性水準為 5%,則可以知道型二錯誤的機率為:

(A) 2.5%

(B) 95%

(C) 97.5%

(D)無法得知

10. 假設你要檢定 H_0 : $\mu = 30$ vs H_1 : $\mu \neq 30$,以下根據樣本數為 36 的結果,哪一組數據最有力地拒絕 H_0 而支持 H_1 ?

(A) $\bar{X} = 28$, S = 6

(B) $\bar{X} = 27$, S = 4

(C) $\bar{X} = 32$, S = 2

(D) $\bar{X} = 26$, S = 9

11. 兩母體變異數相等性的檢定是基於:

(A)兩個樣本變異數的差 (C)兩個母體變異數的差 (B)兩個樣本變異數的比值

(D)樣本變異數差除以樣本均值差

12. 何時應使用 Tukey-Kramer 方法?

(A)檢定常態性

(B)檢定變異數的同質性

(C)檢定誤差的獨立性

(D)檢定成對數據平均數的差異

13. 在單因子變異數分析 (One-Way ANOVA) 中:

(A)存在交互作用項

(C)不存在交互作用項

(B)可以檢定交互作用效應

(D)交互作用項具有(c-1)(n-1)個自由度

14. 若使用 Wilcoxon 秩和檢定 (Wilcoxon Rank Sum Test) 來檢定位置,需滿足的假設為:

(A)獲得的數據是秩或數值,且將轉換為合併秩序

(B)兩個樣本隨機且獨立地從其各自的母群體中抽取

(C)樣本所來自的兩個母群體在形狀和離散程度上相等

(D)以上皆是

15. 在進行涉及兩個數值變量的回歸分析時,假設如下:

(A) X和Y的變異數相等

(B)回歸線周圍的變異在每個 X 值處相同

(C) X和Y是獨立的

(D)以上皆是

16. 關於線性回歸模型的隨機誤差項之機率分佈,以下假設哪一項表述不正確?

(A)分佈為常態分佈

(B)分佈的平均值為 0

(C)分佈的變異數隨著 X 的增加而增加

(D)誤差是相互獨立的

17. 若線性回歸模型的殘差圖呈現扇形,則違反的假設為:

(A)常態性

(B)同質變異性 (Homoscedasticity)

(C)誤差的獨立性

(D)沒有假設被違反,圖形應該呈扇形

18. 兩個數值變量之間線性關係的強度可以用以下哪一項測量:

(A)散佈圖

(B)相關係數

(C)斜率

(D) Y 截距

(C) 0.3929	(D) 0.0156	
	名市民表達了對土地利用計劃修訂的意見。62 人表示支 ,其中 15 人為男性。隨機選取一位市民,該市民是女仆	
(A) 0.83 (C) 0.51	(B) 0.17 (D) 0.60	
(B)總變異增加時,F值會 (C)總變異減少時,F值會	平均組內變異減少時,F 值會減少 會減少	
25. 歷史航班記錄顯示,從台 求 175 < X ≤ 195 的機 (A) 0.2	3 北到北京的航班飛行時間 X 呈均勻分佈於 170 分鐘至 :率為: (B) 0.4	220 分鐘之間。
(C) 0.5	(D) 0.75	
	者,接種後一年內感染流感的機率為 0.005,若有 1,000 / 科到流感之機率獨立,試求未來一年受感染人數為 0 或 1 /	
	料 300 毫升,為了檢查機器是否將每罐飲料填滿,製造 \bar{k} 樣本平均數 \bar{x} = 300.6 毫升、樣本標準差 s = 0.02 ,試求飲 $*$	
四、 X 的動差母函數為 $M_X(t)$	$t) = \left(\frac{1}{4}\right) (e^t + e^{2t} + e^{3t} + e^{4t})$,Y的動差母函數為 M_Y	$(t) = \left(\frac{1}{3}\right)(e^t +$
(1) W 的動差母函數? (
(2) W 的 p.m.f.(probabilit	ty mass function)? (5 分)	

(B)因變量與自變量之間存在曲線關係

19. 在多元 (二變量) 迴歸模型中,若使用交互作用項,表示:

20. 若一個類別型自變量有 4 個類別,則需要的虛擬變數之數量為:

21. 關於指數平滑法 (Exponential Smoothing),以下哪一敘述不正確?

(C)兩個自變量中沒有一個顯著貢獻於迴歸模型 (D) X_1 與 Y的關係會因 X_2 的不同而改變

(C)在每次平滑計算中使用所有早期觀測值 (D)給予數列中較早的觀測值更大的權重

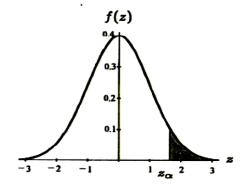
22. 某群體有 12 名男性和 4 名女性。若隨機選取 3 人, 這 3 人全是男性的機率為:

(B) 2 (D) 4

(B)可用於預測

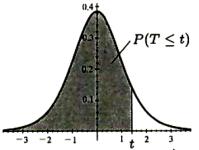
(B) 0.5143

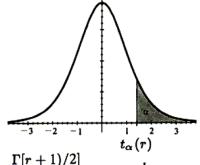
(A)判定係數很小


(A)給予最近的數據更大的權重

(A) 1

(C)3


(A) 0.4219


- 五、某地區駕駛人開車繫安全帶的比例為 p=0.14,今為提高該比例,經宣導活動兩個月之後,從 n=590 位駕駛人的隨機樣本中,發現有 y=104 位駕駛人開車繫安全帶,試問該項活動是否成功? (定義 $\alpha = 0.05$)(10 分)
- 六、實驗者觀察在正常空氣下與加濃co2空氣環境下植物生長的狀況。在四個星期間,給予相同水 分及日照下獲得下列植物生長(單位:克)的資料。試檢定加濃CO2空氣環境下植物生長的速度 是否比正常空氣環境下快?(假設兩組資料的變異數相等、定義 $\alpha = 0.05 \circ \bar{x} = 4.079 \circ \bar{y} = 0.05$ $5.074 \cdot S_X = 1.029 \cdot S_Y = 1.588) (10 \, \%)$

$$P(Z > z_{\alpha}) = \alpha$$

 $P(Z > z) = 1 - \Phi(z) = \Phi(-z)$

Ξα.	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2340	0.2314	0.2463	
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.2177	0.2148 0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1607
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
							250	0.0277	0.0237	. 0.0233

 $P(T \le t) = \int_{-\infty}^{t} \frac{\Gamma[r+1)/2]}{\sqrt{\pi r} \Gamma(r/2) (1+w^2/r)^{(r+1)/2}} dw$

	T	$P(T \leq -$	-t)=1-P	$\frac{(T \le t)}{P(T \le t)}$			
	0.60	0.75	0.90	0.95	 0.975	0.99	0.995
r	$t_{0.40}(r)$	$t_{0.25}(r)$	$t_{0.10}(r)$	$t_{0.05}(r)$	$t_{0.025}(r)$	$t_{0.01}(r)$	$t_{0.005}(r)$
ı	0.325	1.000	3.078	6.314	12.706	31.821	63.657
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012
14	0.258	0.692	1.345	1.761	2.145	2.624	2.997
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750
∞	0.253	0.674	1.282	1.645	1.960	2.326	2.576