國立成功大學 114學年度碩士班招生考試試題

編 號: 128

系 所:電機工程學系

科 目: 線性代數

日期:0210

節 次:第3節

注 意: 1.不可使用計算機

2.請於答案卷(卡)作答,於 試題上作答,不予計分。

- 1. (40 pts, 4 pts each) Mark each statement True or False (2 pts for correct answer). Justify each answer (2 pts).
 - a. Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n . If \mathbf{u} is orthogonal to $\mathbf{v} + \mathbf{w}$, then \mathbf{u} is orthogonal to \mathbf{v} and \mathbf{w} .
 - b. Similar to the above condition in (a), If $||\mathbf{u} \mathbf{v}|| = 0$, then $\mathbf{u} = \mathbf{v}$.
 - c. The set of 2×2 matrices that contain exactly two 1's and two 0's is a linearly independent set in $M_{2\times 2}$.
 - d. If $\{u, v\}$ is a linearly dependent set, then each vector is a scalar multiple of the other.
 - e. If V is a subspace of \mathbb{R}^n and W is a subspace of V, then W^{\perp} is a subspace of V^{\perp} .
 - f. If **u** is in the row space and the column space of an $n \times n$ matrix **A**, then **u** = **0**.
 - g. If v_1 , v_2 , and v_3 come from different eigenspace of A, then it is impossible to express v_3 as a linear combination of v_1 and v_2 .
 - h. If A is diagonalizable and invertible, then A^{-1} is diagonalizable.
 - i. There is no square matrix A such that $det(AA^T) = -1$.
 - j. If det(A) = 0, then A is not expressible as a product of elementary matrices.
- 2. (30 pts, 10 pts each) Let $A = \begin{bmatrix} \frac{1}{3} & \frac{1}{4} \\ \frac{2}{3} & \frac{3}{4} \end{bmatrix}$.
 - a. Find a matrix P such that $P^{-1}AP$ is diagonal.
 - b. Let $n \ge 1$ be an arbitrary integer. Find A^n .
 - c. Use the result of part (b) to determine the matrix $B = \lim_{n\to\infty} A^n$.
- 3. (30 pts) Let A be the matrix given by $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$ with rank A = 2.
 - a. Find an SVD of A. (12 pts)
 - b. Compute A^+ . (6 pts)
 - c. Find a least-squares solution for Ax = b, where $b = [1, 0]^T$. (6 pts)
 - d. Find the least-squares error for part (c). (6 pts)