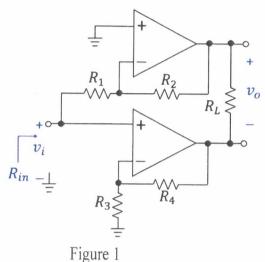
國立臺灣師範大學 114 學年度碩士班招生考試試題

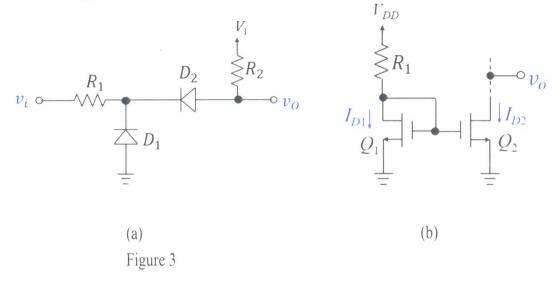

科目:電子學

適用系所:電機工程學系

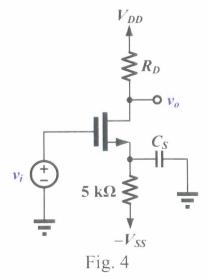
注意:1.本試題共3頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

1. (15 points) Figure 1 shows an OPA amplifier. Assume that the OPAs are ideal, $R_1 = 2 \text{ k}\Omega$, $R_2 = 6 \text{ k}\Omega$, $R_3 = 4 \text{ k}\Omega$, $R_4 = 2 \text{ k}\Omega$, and $R_L = 1 \text{ k}\Omega$.

- (a) Find the input resistance R_{in} .
- (b) If $v_i = 2sin100t$, find v_o and the power consumed on R_L .



- 2. (20 points) Figure 2 shows a common-base BJT amplifier. Assume that $V_{CC}=V_{EE}=5$ V, $R_{sig}=100~\Omega$, $R_C=2~\mathrm{k}\Omega$, $R_E=4.3~\mathrm{k}\Omega$, and $R_L=4~\mathrm{k}\Omega$. The transistor is characterized by $\beta=100$, $V_{BE}=0.7$ V, the thermal voltage $V_T=25~\mathrm{mV}$, and $r_o=\infty$.
 - (a) Find I_C and g_m .
 - (b) Find R_{in} and v_o/v_{sig} . $+V_{CC}$ R_{sig} v_{sig} $+V_{CC}$ R_{E} R_{E} R_{O} R_{O}


Figure 2

國立臺灣師範大學 114 學年度碩士班招生考試試題

- 3. (15 points) For the circuits in Figure 3, answer the following questions.
- (a) For Fig. 3(a), assume that $V_1 = 3 \text{ V}$, $R_1 = 8 \text{ k}\Omega$, $R_2 = 4 \text{ k}\Omega$, and the diodes are ideal. If $v_i = -3 \text{ V}$, find v_0 .
- (b) For the current mirror in Fig. 3(b), assume that $V_{DD} = 7 \text{ V}$, $Q_1 = Q_2$, $\mu_n C_{ox} = 200 \,\mu\text{A}/V^2$, $L = 0.2 \,\mu\text{m}$, $W = 1 \,\mu\text{m}$, and $V_{tn} = 1 \,V$. Also, assume that Q_2 is operating in the saturation region.
 - (i) If $R_1 = 2 \text{ k}\Omega$, find I_{D1} .
 - (ii) If $I_{D2} = 0.5 \, mA$, find R_1 .

- 4. The MOSFET in the amplifier of Fig. 4 is biased to operate in the saturation region with $g_m = 2$ mA/V. Neglect r_o and assume $C_S = 3.18$ μ F.
 - (a) (5 points) Determine the midband voltage gain, v_o/v_i , for $R_D = 10 \text{ k}\Omega$.
 - (b) (10 points) Determine the pole frequency caused by C_s (in Hertz).
 - (c) (10 points) What is the frequency of the transmission zero introduced by C_S (in Hertz)?

國立臺灣師範大學 114 學年度碩士班招生考試試題

- 5. All transistors in the feedback transconductance amplifier shown in Fig. 5 operate in the saturation region, with $g_{m1} = g_{m2} = 4$ mA/V. Assume $R_D = 20$ k Ω , $r_{o2} = 20$ k Ω , $R_F = 100$ Ω , and $R_L = 1$ k Ω . For simplicity, neglect r_{o1} and take r_{o2} into account only when calculating output resistances.
 - (a) (5, 5, and 5 points) Determine the values of A, β , and $A_f = I_o/V_s$.
 - (b) (5, 5 points) Evaluate R_o and R_{of} .

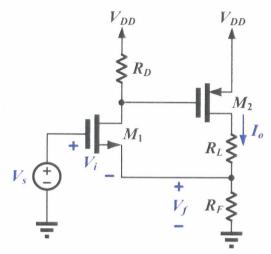


Fig. 5