題號: 41 國立臺灣大學114學年度碩士班招生考試試題

科目:高等微積分

1. (10 points) Let $g:[a,b] \to \mathbb{R}$ and $h:[a,b] \to \mathbb{R}$ be two continuous functions with g(y) < h(y) for all $y \in (a,b)$. Consider

 $\Omega = \{ (x, y) \in \mathbb{R}^2 : g(y) < x < h(y), \ a < y < b \}.$

Prove (a special case of) Green's theorem: If $P:\Omega\cup\partial\Omega\to\mathbb{R}$ is continuous (where $\partial\Omega$ is the boundary of Ω), and if $\frac{\partial P}{\partial x}:\Omega\to\mathbb{R}$ is bounded and continuous, then

$$\iint_{\Omega} \frac{\partial P}{\partial x}(x, y) \, dx \, dy = \int_{\partial \Omega} P(x, y) \, dy,$$

where the right-hand side is computed with respect to a counterclockwise parametrization of $\partial\Omega$.

2. (10 points) Let $f, g : [a, b] \to \mathbb{R}$ be two continuous functions such that they are differentiable on (a, b). Suppose that $|f'(x)| \ge |g'(x)| > 0$ for all $x \in (a, b)$. Prove that

$$|f(x) - f(y)| \ge |g(x) - g(y)|$$
 for all $x, y \in [a, b]$.

3. (15 points) Define

$$\operatorname{sign}(y) = \begin{cases} 1 & \text{if } y > 0, \\ 0 & \text{if } y = 0, \\ -1 & \text{if } y < 0, \end{cases} \qquad f(x) = \begin{cases} \operatorname{sign}\left(\sin\left(\frac{\pi}{x}\right)\right) & \text{if } x \in (0, 1], \\ 0 & \text{if } x = 0. \end{cases}$$

Prove or disprove: f is Riemann integrable.

4. (15 points) Let $\sum_{n=1}^{\infty} x_n$ be a divergent series, where each x_n is positive. Prove that there exists a divergent series $\sum_{n=1}^{\infty} y_n$ such that $y_n > 0$ for all n, and that

$$\lim_{n \to \infty} \frac{y_n}{x_n} = 0$$

In other words, there is no "slowest" divergent series

5. (12 + 8 points) We define a sequence of functions (f_n) as follows. Let $f_1(x) = x$. Once $f_n : [0,1] \to \mathbb{R}$ is defined, we define $f_{n+1} : [0,1] \to \mathbb{R}$ as

$$f_{n+1}(x) = f_n(x) + \frac{x - f_n(x)^2}{2}$$
, for all $x \in [0, 1]$.

- (a) Prove that (f_n) converges pointwise, and determine the limiting function.
- (b) Does (f_n) converges uniformly on [0,1]? Explain your answer.
- 6. (10 + 6 + 8 + 6 points) For $n \ge 1$ and $S \subset \mathbb{R}^n$ uncountable, define $\mathcal{C}(S)$ to be the set of all $x \in \mathbb{R}^n$ such that for each $\varepsilon > 0$, $B_x(\varepsilon)$ contains uncountably many points of S, where $B_x(\varepsilon) := \{y \in \mathbb{R}^n : d(x,y) < \varepsilon\}$ and d is the Euclidean distance.
 - (a) Determine C(S) if n = 1 and if S is the middle-third Cantor set.
 - (b) From now on, let $n \ge 1$ and $S \subset \mathbb{R}^n$ be uncountable.
 - i. Show that C(S) is a closed set.
 - ii. Show that $S \cap \mathcal{C}(S)^c$ is countable and $S \cap \mathcal{C}(S)$ is uncountable. (Here, $\mathcal{C}(S)^c$ is the complement of $\mathcal{C}(S)$ in \mathbb{R}^n .) You may use the following fact without giving a proof: for any $A \subset \mathbb{R}^n$, every open cover for A has a countable subcover.
 - iii. For $E \subset \mathbb{R}^n$ and $x \in E$, we say that x is isolated if there exists $\delta > 0$ such that $B_{\delta}(x) \cap E = \{x\}$. Deduce from ii. that C(S) has no isolated points.