國立臺灣海洋大學114學年度碩士班考試入學招生考試試題

考試科目:分子生物學

學系組名稱:食品科學系碩士班生物科技組

1.答案以橫式由左至右書寫在答案卷上。2.請依題號順序,並標示題號作答。

Section I: Definitions (11 points)

- 1. Introns and exons (in RNA primary transcript). (3 pts)
- 2. Start and stop codons (in translation). (3 pts)
- 3. DNA replication fork: Define what a replication fork is, describe its main components (leading strand, lagging strand, associated proteins). (5 pts)

Section II: Essay Questions (15 points)

- 1. Describe the function of ribosome, mRNA, and ribosomal binding site in protein biosynthesis. (4 points)
- 2. DNA Repair Mechanisms: Please describe DNA repair pathways: nucleotide excision repair and homologous recombination. (5 pts)
- 3. Describe at least three common post-translational modifications. Discuss how they can alter protein function, stability, or localization. (6 pts)

Section III: Single-Choice Questions (24 points)

- 1. Which of the following enzymes is primarily responsible for unwinding the DNA helix during replication?
- A. DNA ligase
- B. Helicase
- C. DNA polymerase I
- D. Topoisomerase II
- 2. In prokaryotic transcription, the σ (sigma) factor is crucial for:
- A. Elongation of the transcript
- B. Initiation by recognizing promoter regions
- C. Termination of transcription
- D. Adding the 5' cap to mRNA
- 3. Which of the following is the primary function of RNA splicing?
- A. To remove introns and join exons together

【第1頁,共3頁】

- B. To translate mRNA into protein
- C. To add a poly-A tail to the mRNA
- D. To unwind the DNA helix for transcription
- 4. Okazaki fragments occur because:
- A. The replication fork only opens in one direction.
- B. RNA primers cannot be removed from DNA.
- C. DNA polymerase can only synthesize DNA in the $5'\rightarrow 3'$ direction.
- D. DNA polymerase synthesizes both leading and lagging strands continuously.
- 5. Which of the following best describes the wobble hypothesis in translation?
- A. A single tRNA can recognize multiple codons due to flexible base pairing at the 3' end of the codon.
- B. The hydrogen bonds between tRNA and mRNA fluctuate heavily.
- C. Only the first base of the anticodon is critical for codon recognition.
- D. rRNA is responsible for recognizing stop codons.
- 6. What is the primary role of EF-Tu and EF-G in bacterial translation?
- A. Both EF-Tu and EF-G are involved in ribosome assembly and recycling
- B. EF-Tu catalyzes peptide bond formation, while EF-G unwinds mRNA
- C. EF-Tu terminates translation, while EF-G initiates it
- D. EF-Tu delivers aminoacyl-tRNA to the ribosome, while EF-G facilitates translocation
- 7. In the context of food science, which of the following statements is TRUE regarding genetically modified organisms (GMOs)?
- A. GMOs do not contain any DNA.
- B. GMOs are developed only for ornamental plants.
- C. GMOs can be engineered for higher nutritional content or resistance to pests.
- D. GMOs are never allowed in food production.
- 8. When considering the central dogma in the context of protein synthesis:
- A. mRNA is replicated to produce identical copies of DNA.
- B. Protein is first converted into RNA, then back to DNA.
- C. Protein is always the end point in the flow of genetic information
- D. DNA is transcribed into mRNA, which is translated into protein.

Section IV: Short Answer Questions (50 points)

- 1. Please define negative autoregulation and retroregulation, and explain how they work. (10 points)
- 2. Please describe the key differences in transcriptional regulation between eukaryotic and prokaryotic organisms. (10 points)
- 3. Please explain what CRISPR is and describe how E. coli uses the CRISPR system to protect itself from reinfection by previously encountered viruses. (10 points)
- 4. Please describe the biogenesis of miRNA and explain how it regulates gene expression. (10 points)
- 5. Please define positional information and explain its role in development. (10 points)