國立臺北大學114學年度碩士班一般入學考試試題

系(所)組別:統計學系

目:數理統計 科

第1頁 共1頁

☑不可使用計算機

Part I

1. Let X and Y be two random variables with the joint probability density function

$$f(x,y) = 2(x+y), \quad 0 \le x \le y \le 1$$

- (a) (10%) Let Z = X + Y. Find the probability density function of Z.
- (b) (10%) Let $W = \ln\left(\frac{Y}{X}\right)$. Find the probability density function of W.
- 2. Let Y be uniformly distributed on the interval (0, 1). Conditionally on Y=y, let X be uniformly distributed on the interval (0, y).
 - (a) (5 %) Find the probability density function of X.
 - (b) (10%) Find E(X) and Var(X).
 - (c) (5 %) Find P(X < 0.3).
- 3. Let $f_{xy}(x,y)$ be the joint probability function of two random variables X and Y. Suppose that the joint moment generating function is

$$M_{(X,Y)}(t_1,t_2) = E(e^{t_1X+t_2Y}) = \left[\frac{1}{3}(e^{t_1+t_2}+1) + \frac{1}{6}(e^{t_1}+e^{t_2})\right]^2$$

- (a) (5 %) Find the joint probability function of X and Y.
- (b) (5 %) Find the marginal distribution of X and the marginal distribution of Y.

Part II

- 1. Let $X_1, X_2, ..., X_n$ be a random sample from Binomial (k, θ) , where k is known and θ is unknown.
 - (a) (5 %) Find a complete sufficient statistic of θ .
 - (b) (5%) Find the uniformly minimum-variance unbiased estimator (UMVUE) of

$$\tau(\theta) = P_{\theta}[X_1 = 1].$$

2. Let $X_1, X_2, ..., X_n$ be a random sample from a population with pdf

$$f(x|\theta) = \theta x^{\theta-1} \mathbf{1}_{\{0 < x < 1\}}, \ \theta > 0.$$

- (a) (5 %) Find the method of moments estimator (MME), $\hat{\theta}$.
- (b) (5 %) Find the asymptotic variance of θ .
- (c) (5 %) Find a consistent estimator of θ . Prove your claim.
- 3. Let $X_i = (X_{i1}, X_{i2})', i = 1, ..., n$, be i. i. d. bivariate normal with unknown $(\mu_1, \mu_2)' = E[X_1]$ and $Var(X_1)$. Let $\theta = \frac{\mu_2}{\mu_1}$ be the parameter of interest $(\mu_1 \neq 0)$. Define $Y_i(\theta) = X_{i2} - \theta X_{i1}$. (a) (5 %) It is known that $Y_1(\theta), \dots, Y_n(\theta)$ are *i. i. d.* with $N(K_1, K_2)$. Find K_1 and K_2 .

 - (b) (5 %) Find a pivotal quantity of θ
 - (c) (5 %) Use the pivotal quantity of (b) to find a $100(1-\alpha)$ % confidence set, C(X), for θ .
 - (d) (5 %) Find a condition such that C(X) is a finite interval.
- 4. (5 %) Let $f(x|\theta)$ be the logistic location pdf

$$f(x|\theta) = \frac{e^{(x-\theta)}}{(1+e^{(x-\theta)})^2}, -\infty < x < \infty, -\infty < \theta < \infty.$$

Based on one observation, X, find the most powerful size α test of H_0 : $\theta = 0$ versus H_1 : $\theta = 1$.