科目:分析化學

適用系所: 化學系

注意:1.本試題共7頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

- 1. You made field measurements of traces of iodide (I⁻) in groundwater. The procedure is to oxidize I⁻ to I₂ and convert the I₂ into an intensely colored complex with the dye brilliant green in the organic solvent toluene. (10 points)
 - (1) 3.15 x 10⁻⁶ M solution of the colored complex exhibited an absorbance of 0.263 at 635 nm in a 1.000-cm cuvet. A blank solution made from distilled water in place of groundwater had an absorbance of 0.018. Find the molar absorptivity of the colored complex.
 - (A) 53500 (B) 63500 (C) 73500 (D) 83500 (E) 93500
 - (2) The absorbance of an unknown solution prepared from groundwater was 0.195. Find the concentration of the unknown.
 - (A) $1.34 \times 10^{-6} \,\mathrm{M}$ (B) $2.34 \times 10^{-6} \,\mathrm{M}$ (C) $3.34 \times 10^{-6} \,\mathrm{M}$ (D) $4.34 \times 10^{-6} \,\mathrm{M}$ (E) $5.34 \times 10^{-6} \,\mathrm{M}$
- 2. Selenium from 0.119 g of Vietnam nuts was converted into the fluorescent product, which was extracted into 10.0 mL of cyclohexane. Then 5.00 mL of the cyclohexane solution were placed in a cuvet for fluorescence measurement. Standard additions of fluorescent product containing 1.30 μg Se/mL are given in the table. (10 points)

Volume of Standard added (μL)	Fluorescence Intensity (arbitrary units)	
0.0	41.5	
10.0	49.1	
20.0	56.5	
30.0	63.9	
40.0	70.2	

- (1) Construct a standard addition graph to find the concentration of Se in the 5.00-mL unknown solution.
 - (A) $0.015~\mu g/mL$ (B) $0.0015~\mu g/mL$ (C) $0.030~\mu g/mL$ (D) $0.0030~\mu g/mL$ (E) None of the Above
- (2) Find the wt% of Se in the nuts.
 - (A) $1.24 \times 10^{-2} \%$ (B) $1.24 \times 10^{-3} \%$ (C) $1.24 \times 10^{-4} \%$ (D) $1.24 \times 10^{-5} \%$ (E) $1.24 \times 10^{-6} \%$

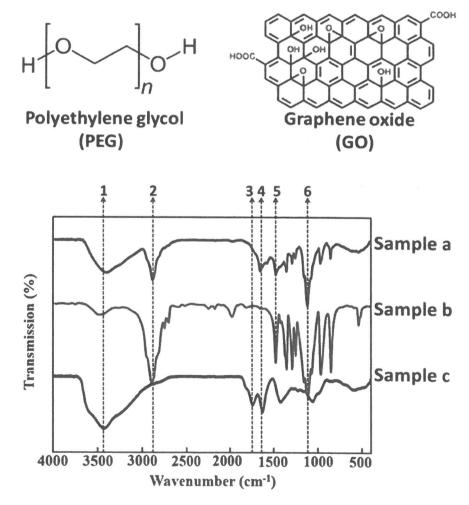
3. An echellette grating containing 1550 blazes per millimeter was irradiated with a polychromatic beam at an incident angle 46 degrees to the grating normal. Calculate the wavelengths of radiation that would not appear at angles of reflection of +20 deg (angle r). (5 points)

(A) 171 nm (B) 228 nm (C) 324 nm (D) 684 nm (E) 885 nm

4. The following data are for a liquid chromatographic column:

Length of packing	25 cm	
Flow rate	0.3 mL/min	
V_{M}	1.37 mL	
V_{S}	0.164 mL	

A chromatogram of a mixture of species A, B, C, and D provided the following data:


	Retention	Width of Peak		
	Time, min	Base (W), min		
Non-retained	3.1			
A	5.5	0.41		
В	13.3	1.07		
С	14.2	1.15		
D	21.5	1.71		

(total 25 points, 3 points each, Question (1) is 4 points)

- (1) Calculate the distribution constant of peak A.
 - (A) 4.5 (B) 5.5 (C) 6.5 (D) 7.5 (E) 8.5
- (2) Calculate the retention factor of peak B.
 - (A) 3.3 (B) 4.3 (C) 5.3 (D) 6.3 (E) 7.2
- (3) Calculate the number of plates of peak C.
 - (A) 2040 (B) 2140 (C) 2240 (D) 2340 (E) 2440
- (4) Calculate the plate height for the column.
 - (A) 0.1 (B) 0.05 (C) 0.01 (D) 0.005 (E) 0.001
- (5) Calculate the selectivity factor of peak C and D.
 - (A) 1.55 (B) 1.66 (C) 1.77 (D) 1.88 (E) 1.99
- (6) Calculate the resolution of peak B and C.
 - (A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8 (E) 0.9

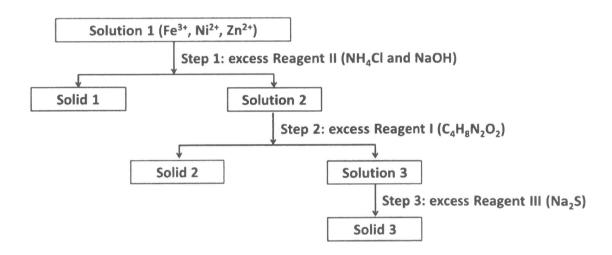
- (7) Calculate the length of column necessary to separate the two species with a resolution of 1.5 for of species B and C.
 - (A) 45 cm (B) 55 cm (C) 65 cm (D) 75 cm (E) 85 cm
- (8) Calculate the time required to separate the two species B and C on the column.
 - (A) 20 min (B) 30 min (C) 40 min (D) 50 min (E) 60 min
- 5. For Question (total 12 points, 2 points each)

The FTIR spectra shown below were measured by using three compounds, including polyethylene glycol (PEG), graphene oxide (GO), and the composite of polyethylene glycol/graphene oxide (PEG/GO). Consider the molecular structures of PEG and GO shown below. Find the correct compounds for Sample a, b, and c.

- (1) Which chemical bond is indexed to peak 2 (~2920 cm⁻¹)?
 - (A) C-O stretching (B) C-H Asymmetric stretching (C) C=C stretching
 - (D) C=O stretching

- (2) Which chemical bond is indexed to peak 4 (~1630 cm⁻¹)?
 - (A) C-O stretching (B) C-H Asymmetric stretching (C) C=C stretching
 - (D) C=O stretching
- (3) Which chemical bond is indexed to peak 6 (~1125 cm⁻¹)?
 - (A) C-O stretching (B) C-H Asymmetric stretching (C) C=C stretching
 - (D) C=O stretching
- (4) Which statement is correct for Sample a?
 - (A) Sample a is PEG due to the presence of peak 2, 5, and 6.
 - (B) Sample a is GO due to the presence of peak 2, 3, 4, 5, and 6.
 - (C) Sample a is PEG/GO due to the presence of peak 2, 3, 4, 5, and 6.
 - (D) All of the above are included.
- (5) Which statement is correct for Sample b?
 - (A) Sample b is PEG due to the presence of peak 2, 5, and 6.
 - (B) Sample b is GO due to the presence of peak 2, 5, and 6.
 - (C) Sample b is PEG/GO due to the presence of peak 2, 3, 4, 5, and 6.
 - (D) All of the above are included.
- (6) Which statement is correct for Sample c?
 - (A) Sample c is PEG due to the presence of peak 2, 5, and 6.
 - (B) Sample c is GO due to the presence of peak 3 and 4.
 - (C) Sample c is PEG/GO due to the presence of peak 2, 5, and 6.
 - (D) All of the above.
- 6. For Question (total 22 points, 2 points each, Question (8) is 6 points)

A 1.2 g of commercial vitamin C ($C_6H_8O_6$, 176 g/mol; $pK_{a1} = 4.70$; $pK_{a2} = 11.8$) tablet was dissolved in 100 mL of water. A 50 mL aliquot was taken out and titrated by 12 mL of 0.15 M I_2 standard solution to afford **Reaction 5**. When it was close to the equivalent point, an indicator can be considered to add into the aliquot. On the other hand, another 50 mL aliquot was taken out and neutralized by 0.10 M NaOH to afford **Reaction 6**.


Reaction 5: $??C_6H_8O_6$ (aq.) + $??I_2$ (aq.) \leftrightarrow $??C_6H_6O_6^{2-}$ (aq.) + $??H^+$ (aq.) + $??I^-$ (aq.)

Reaction 6: $??C_6H_8O_6$ (aq.) + $??OH^-$ (aq.) $\leftrightarrow ??C_6H_6O_6^{2-}$ (aq.) + $??H_2O$ (l)

- (1) Complete Reaction 5.
 - (A) $1C_6H_8O_6$ (aq.) + $1I_2$ (aq.) $\leftrightarrow 1C_6H_6O_6^{2-}$ (aq.) + $1H^+$ (aq.) + $1I^-$ (aq.)
 - (B) $1C_6H_8O_6$ (aq.) + $1I_2$ (aq.) $\leftrightarrow 2C_6H_6O_6^{2-}$ (aq.) + $2H^+$ (aq.) + $2I^-$ (aq.)
 - (C) $2C_6H_8O_6$ (aq.) + $2I_2$ (aq.) $\leftrightarrow 1C_6H_6O_6^{2-}$ (aq.) + $1H^+$ (aq.) + $1I^-$ (aq.)
 - (D) $1C_6H_8O_6$ (aq.) + $1I_2$ (aq.) $\leftrightarrow 1C_6H_6O_6^{2-}$ (aq.) + $2H^+$ (aq.) + $2I^-$ (aq.)
- (2) In Reaction 5, which chemical is the oxidant?
 - (A) $C_6H_8O_6$ (aq.) (B) I_2 (aq.) (C) $C_6H_6O_6^{2-}$ (aq.) (D) I^- (aq.)
- (3) Without an indicator, what's the color change slightly before and after equivalent point in the sample solution?
 - (A) from transparent to yellow (B) from yellow to grey
 - (C) from grey to black (D) from black to transparent
- (4) With a starch as the indicator, what's the color change slightly before and after equivalent point in the sample solution?
 - (A) from transparent to yellow (B) from transparent to green
 - (C) from transparent to blue (D) from transparent to purple
- (5) Calculate the weight (g) of vitamin C in the tablet.
 - (A) 603.6 g (B) 633.6 g (C) 663.6 g (D) 693.6 g
- (6) Calculate the weight percent (%) of vitamin C in the tablet.
 - (A) 57.8% (B) 55.3% (C) 52.8% (D) 50.3%
- (7) Complete Reaction 6.
 - (A) $1C_6H_8O_6$ (aq.) + $1OH^-$ (aq.) $\leftrightarrow 1C_6H_6O_6^{2-}$ (aq.) + $1H_2O$ (l)
 - (B) $1C_6H_8O_6$ (aq.) + $1OH^-$ (aq.) $\leftrightarrow 2C_6H_6O_6^{2-}$ (aq.) + $2H_2O$ (1)
 - (C) $2C_6H_8O_6$ (aq.) + $2OH^-$ (aq.) $\leftrightarrow 1C_6H_6O_6^{2-}$ (aq.) + $1H_2O$ (1)
 - (D) $1C_6H_8O_6$ (aq.) + $2OH^-$ (aq.) $\leftrightarrow 1C_6H_6O_6^{2-}$ (aq.) + $2H_2O$ (l)
- (8) Consider the pK_a of vitamin C, calculate the pH value at the 1st equivalent point. (6 points) (此題為計算題,需列出計算過程)
- (9) Consider the pK_a of vitamin C, choose a suitable indicator for the 1st equivalent point.
 - (A) Methyl red $(4.2 \rightarrow 6.3 / \text{Red} \rightarrow \text{Yellow})$
 - (B) Bromocresol blue (6.2→7.6 / Yellow→Blue)
 - (C) Cresol purple $(7.6 \rightarrow 9.2 / \text{Yellow} \rightarrow \text{Purple})$
 - (D) Thymolphthalein (9.3→10.5 / Colorless→Blue)

7. In **Table 1**, Reagent I (C₄H₈N₂O₂), Reagent II (NH₄Cl and NaOH), and Reagent III (Na₂S) are used to test the reactivities of different metal ions (Fe³⁺, Ni²⁺, and Zn²⁺). Among them, Reagent I (C₄H₈N₂O₂) is an organic ligand to form the metal complex: n(C₄H₈N₂O₂) + Mⁿ⁺ → M(C₄H₇N₂O₂)_n + nH⁺. Accordingly, find out a good method to separate three metal ions (Fe³⁺, Ni²⁺, and Zn²⁺) in the sample solution 1 by using the flowchart below. Each step is conducted to complete remove one kind of metal cation. (total 16 points, 2 points each)

Table 1	Reagent I:	Reagent II:	Reagent III:
	$C_4H_8N_2O_2$	NH ₄ Cl and NaOH	Na ₂ S
Fe ³⁺ (Yellow aq.)	Black Ion	Orange/Brown Solid	Black Solid
Ni ²⁺ (Green aq.)	Pink Solid	Light Green Ion	Dark green Solid
Zn ²⁺ (Transparent aq.)	White Solid	Transparent Ion	White Solid

- (1) Write the chemical formula for Solid 1.
 - (A) $Ni(OH)_2$ (B) $Zn(OH)_2$ (C) $Fe(OH)_3$ (D) All of the above
- (2) Write the chemical formula for Solid 2.
 - (A) $(C_4H_7N_2O_2)_2$ -Ni (B) $(C_4H_7N_2O_2)_2$ -Zn (C) $(C_4H_7N_2O_2)_3$ -Fe (D) All of the above
- (3) Write the chemical formula for Solid 3.
 - (A) NiS (B) ZnS (C) Fe_2S_3 (D) All of the above
- (4) Write the chemical formula for Solution 2.
 - (A) $Fe(H_2O)_6^{3+}$ and $Ni(H_2O)_6^{2+}$ (B) $(NiCl_4)^{2-}$ and $(ZnCl_4)^{2-}$
 - (C) $Fe(NH_3)_6^{3+}$ and $Ni(NH_3)_6^{2+}$ (D) $Ni(NH_3)_6^{2+}$ and $Zn(NH_3)_6^{2+}$

- (5) When adding Fe³⁺ (Yellow aq.) to the Solid 2, we can get a black ionic product in the aqueous solution. Which of the following statement is correct?
 - (A) Reagent I have the stronger coordination to Ni²⁺ than Fe³⁺
 - (B) Reagent I have the stronger coordination to Ni²⁺ than Zn²⁺
 - (C) Reagent I have the stronger coordination to Fe³⁺ than Ni²⁺
 - (D) Reagent I have the stronger coordination to Zn²⁺ than Ni²⁺
- (6) When adding Ni²⁺ (Green aq.) to the white solid of (C₄H₇N₂O₂)₂-Zn, we can get the Solid 2. Which of the following statement is correct?
 - (A) Reagent I have the stronger coordination to Ni²⁺ than Fe³⁺
 - (B) Reagent I have the stronger coordination to Ni²⁺ than Zn²⁺
 - (C) Reagent I have the stronger coordination to Fe³⁺ than Ni²⁺
 - (D) Reagent I have the stronger coordination to Zn^{2+} than Ni^{2+}
- (7) From Question (5)-(6), list the order of formation constant (K_f) of Reagent I toward three metal cations (Fe³⁺, Ni²⁺, and Zn²⁺)?
 - $(A) \ Fe^{3+} > Ni^{2+} > Zn^{2+} \quad \ (B) \ Fe^{3+} = Ni^{2+} = Zn^{2+} \quad \ (C) \ Fe^{3+} < Ni^{2+} < Zn^{2+}$
 - (D) None of the above
- (8) Which statement is correct to compare the reactivity of Reagent III toward three metal cations (Fe^{3+} , Ni^{2+} , and Zn^{2+})?
 - (A) Add Reagent III to Solution 1 to confirm the reactivity of Ni²⁺ and Zn²⁺
 - (B) Add Reagent III to Solution 2 to confirm the reactivity of Fe³⁺ and Ni²⁺
 - (C) Add Reagent III to Solution 3 to confirm the reactivity of Fe^{2+} and Zn^{2+}
 - (D) None of the above