IERGEAZ 4L EERLHEPLEEZR A
#B8 kA BRAM  ERAIRSA
EEIARBAS R FRAALERLHS  BRABE AL E LARLABALRALERN  BRRET ) o

AR (F20%) LEFEAFRERGI  HETHRNEET
(—) The following C code defines the data structure of stack implemented by an array. Please
fill in the blanks to complete the function for isEmpty, push, and pop. It is assumed that the
function iniStack() is called initially before using the stack. (3 4 18 % ) (4 )

// Define the maximum stack size void push(Stack *s, char ¢) { // Push an element ¢ onto the stack
#define MAX 1000 if (S->t0p < (2) ) {
typedef struct { s->items] 3) =c¢;

char items[MAX]; }

int top; }
} Stack;

char pop(Stack *s) {  // Pop an element from the stack
void initStack(Stack *s) { if (1isSEmpty(s)) {
} s->top =-1; return s->items| 4) l;
}
) . return "\0'; // Return null character if stack is empty

// Check if the stack is empty }
bool isEmpty(Stack *s) {

return, a) ;
}

(=) The following function is designed to check if a string s has balanced parentheses (), {} by
using a stack. Example: "({})" — True, "({)}" — False. Please fill in the blanks to complete
the function. (& 3 A2 4) (6 %)

bool isBalanced(const char *s) {
Stack stack;
initStack(&stack);

for (int i = 0; s[i] I="\0"; i++) {
char current = s[i];

if (current == (' || current == '{") {
push(&stack, current);

} else if (current ==")' || current =='}") {
if ( (Q) ) {

return False;
}

char top = (6) :

if ((current ==")' && top !="'(") ||
(current =="}' && top !="{") {
return False;

}

Return ____;




Ry e#maA? 114 25 EALHB AL XRA

(=) The following C code is used to merge two sorted linked lists into a single sorted linked
list. Example: list1: 1 — 3 — Sandlist2:2 — 4 — 6
The returned sorted listis: 1 - 2 — 3 — 4 — 5 — 6
Please fill in the blanks to complete the function. Note that list] and list2 are possible NULL
and the resultant list has a dummy node as the head node. (& 5 18 % #&) (10 %)

struct Node {

int data;

struct Node* next;
L

struct Node* mergeSortedLists(struct Node* listl, struct Node* list2) {
struct Node dummy;
struct Node* tail = &dummy;
dummy.next = NULL;

while (list] !=NULL && list2 != NULL) {
if (list1->data < list2->data) {
tail->next = list1;
listl = (8) :
} else {
tail->next = list2;
list2 = 9) 3
}
tail=___ (10)
}

if (listl !=NULL) {

tail->next = (11) ;
} else {

tail->next = 12) .
}

return dummy.next; / Return the head of the merged sorted list.

= ~ Sorting problem (& 8 %)

(—) Suppose there are 7 files which contains sorted data, whose sizes are as following:
(F1) = 1200, (F2) = 900, (F3) = 2500, (F4) = 3200, (F5) = 800, (F6) = 1800, (F7) = 1500;
We would like to perform 2-way merge sorting several times on these 7 files to get a file
with total sorted data, where the result of each 2-way merge sorting is written back to a file.
Please decide the order of performing 2-way merges such that the total number of data I/O
can be minimized. (4 %)



SERGHAL 114 2EEELHR A R84

(=) Given 9 numbers stored in the following array.
index 1 2 3 4 5 6 ¥ 8 9
value 4 10 1 18 2 9 20 7 12

1. Which one of the following options (A-D) is the possible temporal result when
performing insertion sort? (2 %)

2. Which one of the following options (A-D) is the possible temporal result when
performing iterative merge sort? (2 %)

(A)
index 1 2 3 4 5 6 7 8 9
value 1 4 10 18 2 7 9 20 12
(B)
index 1 2 3 4 5 6 7 8 9
value 1 2 4 7 10 9 20 18 12
©
index 1 2 3 4 5 6 7 8 9
value 1 2 4 18 10 9 20 7 12
D)
index 1 2 3 4 5 6 7 8 9
value 1 2 4 10 18 9 20 7 12

=~ EHR H129)

(—) Suppose that a graph with m vertices and » edges are represented by an adjacency matrix.
What is the time complexity to get all the edges terminating at a particular vertex?
(B8)C %)

(A) O(mxn)
(B) O(m)
(©) O
(D) O@m?)
(E) O(*)

(=) What is the worst-case time complexity for finding the height of a binary tree with n nodes?
(EB)C )
(A) O(1)
(B) O(log n)
(C) O(n)
(D) O(n log n)
(E) O(n*)



Y ERFHRAE 4 EFERTER LS KAR

(=) What is the time complexity for finding certain element in a max heap with » nodes?
(EB)C )
(A) O(1)
(B) O(log n)
(©) O(»)
(D) O(n log n)
(E) O(n*)

(va) Which of the following traversal on a binary search tree can be used to reconstruct the
same tree structure? (% &) 3 %)
(A) Preorder traversal.
(B) Inorder traversal.
(C) Postorder traversal.

(D) Level-order traversal.

W ~ Given the following adjacency multi-list structure for a graph G. (3£ 10 %)

Head Nodes El | 0 | 1 | E2 | Null
Vo[o] | El E2 | 0 | 2 | E3 | E4
V1[1] | El E3 | 0 | 3 |Null| E4
V2[2] | E2 E4 | 2 | 3 | E5 | Null
V3[3] | E3 ES | 2 | 4 | E6 | E7
V4[4] | E5 E6 | 2 | 5 |Null| E8
V5[5] | E6 E7 | 4 | 6 |Null | ES8
ve[6] | E7 E8 | 5 | 6 | Null | Nul

(—) Please draw the BFS spanning tree of G starting from vertex V3. 3 %)

(=) In order to find the articulation points of the graph G1, traverse the graph starting from
vertex 3 to get the dfs number (dfnr) and the lowest dfn (low) reachable by a single back
edge. Please write the dfnn and low value for each vertex. If there is more than one adjacent
vertex, visit the vertex with smaller number first. (4 %)

( =) Please draw the bi-connected components of G separated from the articulation points.
G )

E ~ (7 %) Let A[1 : N] represent an array containing N elements, and the index of 4 starts from 1.
The first n, n < N/2, entries of 4 (i.e., A[1 : n]) store a sequence of » integers a1, az, . . . , an.
Assume that these » integers are sorted in non-descending order, that is, a1 <a» <. .. <an. Each

of the remainder of array A stores a large number M > ay.

-4 -



>t
s

A

IEEEGHEAL 14 LEEBREHM A F R

On input an integer y, y < M, design an O(log n) algorithm to find the index k such that Alk] =y,
or report that there is no such y in 4. Note that the input data is only y, not including 7 and N.

(8 %) Finite groups are often used in cryptosystems. For example, in RSA, the multiplicative
group used is the integers modulo 7, represented by Zj,. In this group, the product of x and y is
an ordinary integer product, but the result must be divided by » and then take the remainder. For
example, in Zjs, 2 x4 =8 mod 15 =8 and 4 x 7 = 28 mod 15 = 13. Given an integer a, the
inverse of @ in Z;, is the number b, such that ¢ x b = 1. For example, 2 x 8 = 16 mod 15 =1, so
the inverse of 2 in Zj¢ is 8.

On input two integers a and » design an efficient algorithm for computing the inverse of a in Zy.

(# 15 %) Given a weighted undirected graph G = (V, E, w), where V is the vertex set, E is the
edge set, w: E — Ris the weight defined on the edges of G. Computing the minimum spanning
tree and shortest path of G has many practical applications. Some algorithms require weights to
be non-negative. Assume that some edges of G have negative weights.

(—) (7 %) Is it possible to add a fix number to the weights so that all weights are nonnegative

and then run the algorithm to get a correct minimum spanning tree for the original graph?

(=) (8 %) Isit possible to do this while computing the shortest path?

For each case, if it is possible, provide a proof or a convincing reason; Otherwise, provide a
counterexample showing that the output would be different.

(3% 20 %) Given a weighted undirected graph G = (¥, E, w). Assume that | /| > 2 and the weights
w(e) > 0 for each edge e € E. A simple cycle of G that contains every vertex is called a
Hamiltonian cycle. Computing the Hamiltonian cycle of a given graph is NP-hard. In this
problem, we want to compute a Hamiltonian cycle whose weight is at most 2 times the weight
of the shortest Hamiltonian cycle. The method is described as follows:

(a) Compute a minimum spanning tree 7 of G.

(b) Start from any vertex v, let vo, vi, . . . , vo-1 be the depth first listing of the vertices of the
tree 7.
(c) Output the cycle C=vp, v1, . . ., Va1, Vo.

Assume that the weights on the edges of G satisfy the triangle inequality. Let S be a subgraph of
G. Define w(S) as the sum of all edge weights of subgraph S. Let C* be the optimal Hamiltonian
cycle of G. Prove w(C) < 2w(C") through the following steps.

(=) O 7)) w(C) <2w(D).

(=) 8 &) w(T) <w(C* — {e}) for any edge e in C".

(2) B 7)) w(C) <2w(C).

In the above notation, C — {e} is the graph obtained from C by deleting edge e from C.



