國立中正大學 114 學年度碩士班招生考試

試 題

[第3節]

科目名稱	輸送現象與單元操作
系所組別	化學工程學系

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 書記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 114 學年度碩士班招生考試試題

科目名稱:輸送現象與單元操作

本科目共 4 頁 第 1 頁

系所組別: 化學工程學系

- 1. The chart below shows reduced viscosity as a function of reduced temperature.
 - i) Explain why reduced properties are commonly used in engineering and scientific analyses.(5 points)
 - ii) Discuss why the viscosity of liquids decreases, while the viscosity of gases increases, with an increase in temperature. (5 points)

國立中正大學 114 學年度碩士班招生考試試題

科目名稱:輸送現象與單元操作

本科目共 4 頁 第 2 頁

系所組別:化學工程學系

2. A semi-infinite liquid with constant density (ρ) and viscosity (μ) is bounded below by a horizontal surface (the xz-plane). Initially, the liquid and the surface are stationary. Then at time t=0, the solid surface begins to move in the positive x-direction with a constant velocity v_0 as shown in the following figure.

The equation of motion for the x-component of the velocity is

$$\frac{\partial v_x}{\partial t} = \frac{\mu}{\rho} \frac{\partial^2 v_x}{\partial y^2}$$

- i) Derive the equation of motion for the x-component of the velocity using a shell balance approach. (10 points)
- ii) Non-dimensionalize the variable y. (5 points)
- iii) Non-dimensionalize the partial differential equations. (10 points)
- iv) Write down the IC and BCs for the dimensionless differential equation. (5 points)
- v) Solve the partial differential equation. (10 points)

國立中正大學114學年度碩士班招生考試試題

科目名稱:輸送現象與單元操作

本科目共 4 頁 第 3 頁

系所組別: 化學工程學系

3. A double-pipe heat exchanger is used, where cold water enters the inner pipe at an inlet temperature of 30°C and a flow velocity of 2 m/s. Hot water enters the outer pipe at an inlet temperature of 70°C. The fluids flow in a countercurrent configuration. The inner pipe diameter is 0.05 m, and the outer pipe diameter is 0.1 m. The inner pipe wall thickness of 1 mm and pipe material thermal conductivity of 50 w/m κ.
The physical properties of cold and hot water are the same: density ρ = 1000 kg/m³ dynamic viscosity μ=0.001 Pa s, specific heat capacity c_p = 4.2 kJ/kg κ and thermal conductivity k = 0.6 w/mκ. If the outlet temperature of the cold water is 40°C and the flow rates of cold and hot water are identical, calculate the required length of the double-pipe heat exchanger. (25 points)

Hint: $Nu = 0.023Re^{0.8}Pr^n$

where n = 0.4 (hot side) or n=0.3 (cold side)

Validity: $0.6 \le Pr \le 160$; Re > 10000; $\frac{L}{D} > 10$

國立中正大學 114 學年度碩士班招生考試試題

科目名稱:輸送現象與單元操作

系所組別: 化學工程學系

本科目共 4 頁 第 4 頁

4. In a chemical pipeline, corrosion occurs primarily due to the reaction between water and organic chlorides, producing ferric chloride (FeCl₃). When hydrochloric acid (HCl) is present, the corrosion rate is mainly controlled by the mass transfer rate of water to the pipe wall. Water (H₂O) is the limiting reactant, and corrosion occurs only when water reaches the pipe wall. The reaction at the pipe wall is extremely fast, and the water concentration at the wall (C_w) can be assumed to be zero. The primary reaction can be simplified as:

$$2Fe + 6H_2O + 3Cl_2 \rightarrow 2FeCl_3 + 6H_2$$

The known parameters are: Water concentration in the bulk(C_{∞}): 10 ppm(mass); Water diffusivity: $D_{AB}=1.5\times10^{-9}~\text{m}^2/\text{s}$; Flow velocity: u=0.2~m/s; Pipe diameter: D=0.05~m; Fluid density: $\rho=1000~\text{kg/m}^3$; Fluid viscosity: $\mu=1.0\times10^{-3}~\text{kg/m-s}$; Molar mass of Fe: 55.845 g/mol; Molar mass of H₂O: 18 g/mol.

- i) Calculate mass transfer coefficient, k_c when f = 0.22. (10 points)
- ii) Calculate the corrosion rate of the pipe (Fe loss). (15 points) Hint:

Coulburn-Chilton J-factor analogy:

$$J_M = \frac{f}{2} = J_H = \frac{Nu}{RePr^{\frac{1}{3}}} = J_D = \frac{Sh}{ReSc^{\frac{1}{3}}}$$

Mass transfer:

$$J = k_c \cdot A \cdot \Delta C$$

Where:

J: mass transfer rate

A: the pipe cross area,

 ΔC : concentration driving force ($C_{\infty}-C_{\rm w}$),

Kc: mass transfer coefficient