國立中正大學 114 學年度碩士班招生考試

試 題

[第4節]

科目名稱	電子學
系所組別	電磁晶片組 電機工程學系-計算機工程組 晶片系統組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 114 學年度碩士班招生考試試題

科目名稱:電子學

本科目共 2 頁第 1 頁

系所組別:電機工程學系-電磁晶片組、計算機工程組、晶片系統組

- 1. (20%) For an operation in triode region, the NMOS transistor is biased with v_{DS} =0.3V, it conducts 48µA for v_{GS} =2V and 96µA for v_{GS} =3V, respectively.
 - (a) (5%) What is the possible threshold voltage V_{TN} ?
 - (b) (5%) This transistor is manufactured by 0.18µm process technology and the related $k_n' (=\mu_n C_{ox})$ is $20\mu A/V^2$, what is the aspect ratio (W/L) for it?
 - (c) (5%) How much current can be expected to flow through it with v_{GS} =2.85V and v_{DS} =0.25V?
 - (d) (5%) If the device operates at v_{DS} =2V, for what value of v_{GS} will the drain-end of the MOSFET channel just become pinch-off.
- 2 (20%) As shown in the right-hand-side OP-amp circuit,
 - (a) (5%) Does it behave like low-pass or highpass? Please show it by deriving the transfer function.
 - (b) (5%) What's the high frequency gain?
 - (c) (5%) What's the 3-dB frequency?
 - (d) (5%) At what frequency does the magnitude of high frequency gain reduce to unity?

- 3 (20%) A MOSFET amplifier with active load is biased with V_{dd} =3 V. The transistor parameters are V_{TN} = 0.5V, V_{TP} = -0.5 V, k'_n = 100 μ A/V², k'_p = 50 μ A/V², and $\lambda_n = \lambda_p$ =0.02V⁻¹. The quiescent values are V_O = 1.5 V and V_I = 1.2 V. Q_2 and Q_4 are identical.
 - (a) (5%) Taking the channel length modulation effect into considerations to design the required W/L ratio of Q_1 , Q_2 , Q_4 and Q_3 such that $I_O = I_{ref} = 100 \mu A$.
 - (b) (5%) Please calculate the output resistances (r_{o1} and r_{o4}) of Q_1 and Q_4 .
 - (c) (5%) Please calculate the transconductance g_{m1} of Q_1 .
 - (d) (5%) Determine the small-signal voltage gain (v_0/v_1) .

國立中正大學 114 學年度碩士班招生考試試題

科目名稱:電子學

本科目共 2 頁第 2 頁

系所組別:電機工程學系-電磁晶片組、計算機工程組、晶片系統組

- 4 (20%) A differential amplifier using a $1k\Omega$ resistor R_{ss} to establish a 1mA dc biased current. The transistors Q_1 and Q_2 are with the properties of k_n (W/L) = $4mA/V^2$, V_{TN} =0.8V. Skip the channel length modulation effect.
 - (a) (5%) Define the required value of V_{CM} .
 - (b) (5%) Define the value of R_D so as to get a differential gain A_d of 10 V/V.
 - (c) (5%) What's the drain voltage over Q₁.
 - (d) (5%) Determine the common-mode gain $\Delta V_{D1}/\Delta V_{CM}$.

- 5 (20%) A feedback transresistance amplifier utilizes two identical MOSFETs biased by an ideal current sources I = 0.4 mA. The MOSFETs are sized to operate at $V_{OV} = 0.000$
 - 0.2 V and have $V_{TN} = 0.5 \text{ V}$ and $V_A = 16 \text{ V}$. The feedback resistance $R_F = 10 \text{ k}\Omega$.
 - (a) (5%) What's the dc voltage at the input of Q_1 ?
 - (b) (5%) What are g_m and r_o of Q_1 and Q_2 ?
 - (c) (5%) Derive the open-loop gain in terms of g_{m1} , r_{o1} , g_{m2} , r_{o2} and R_F
 - (d) (5%) Please express the gain-with-feedback (A_f)

