科目名稱:機率【通訊所碩士班甲組】

一作答注意事項-

考試時間:100分鐘

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛 筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:機率【通訊所碩士班甲組】

題號:437005

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第1頁

- 一、選擇題(單選,計分方式:不倒扣,答對得該題全部分數,答錯及未作答得零分)
- 1. (5%) For $n \in \mathbb{Z}^+$, $\sum_{k=0}^n k \binom{n}{k} =$
 - (A) 0.
 - (B) 2^n .
 - (C) $n 2^{n-1}$.
 - (D) $n 2^n$.
 - (E) $n 2^{n+1}$.
- 2. (5%) For $n \in \mathbb{Z}^+$, $\sum_{k=0}^n (-1)^k \binom{n}{k} =$
 - (A) 0.
 - (B) 2^{n-1} .
 - (C) 2^n .
 - (D) $n 2^{n-1}$.
 - (E) $n 2^n$.
- 3. (5%) What is the total number of possible solutions for $x_1 + x_2 + x_3 = 10$, where $x_1, x_2, x_3 \in \{0\} \cup \mathbb{Z}^+$?.
 - (A) 36
 - (B) 45
 - (C) 66
 - (D) 120
 - (E) 286
- 4. (5%) How many 11-letter words out of "examination"?
 - (A) 40 320
 - (B) 4 989 600
 - (C) 13 305 600
 - (D) 39 916 800
 - (E) None of the above
- 5. (5%) Which of the following is not a type of random variables?
 - (A) Continuous random variables
 - (B) Discrete random variables
 - (C) Hybrid random variables
 - (D) Mixed random variables
 - (E) None of the above

科目名稱:機率【通訊所碩士班甲組】

題號: 437005

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第2頁

6. (:	5%)	Given that a,	$b \in \mathbb{R}$.	which	of the	following	g is true	about the	CDF	of any	random	variable 1	X?
-------	-----	---------------	----------------------	-------	--------	-----------	-----------	-----------	-----	--------	--------	------------	----

- (A) $F_X(a) > F_X(b)$ when a > b
- (B) $F_X(a) \ge F_X(b)$ when $a \ge b$
- (C) $F_X(a) = F_X(b)$ if and only if a = b
- (D) $F_X(a+b) = F_X(a) + F_X(b)$ for any a and b
- (E) None of the above

7. (5%) If H(x) and $\delta(x)$ are, respectively, the Heaviside step function and the Dirac delta function evaluated at x (where $x \in \mathbb{R}$), then $\int_{-\infty}^{x} H(\phi) d\phi =$

- (A) 1
- (B) $\delta(x)$
- (C) $x \delta(x)$
- (D) H(x)
- (E) x H(x)

8. (5%) Let X and Y be two random variables such that they are linearly dependent. Which of the following about ρ_{XY} , the correlation coefficient of X and Y, is correct?

- (A) $\rho_{XY} = -1$
- (B) $\rho_{XY} = 0$
- (C) $\rho_{XY} = 1$
- (D) $\rho_{XY} = -1 \text{ or } \rho_{XY} = 1$
- (E) None of the above

9. (5%) Given that X is a Poisson random variable with mean μ , find $M_X(t)$, the moment-generating function of X.

- (A) $M_X(t) = \exp[\mu (e^t 1)]$
- (B) $M_X(t) = \exp[\mu (e^t + 1)]$
- (C) $M_X(t) = \exp(\mu t 1)$
- (D) $M_X(t) = \exp(\mu t + 1)$
- (E) None of the above

科目名稱:機率【通訊所碩士班甲組】

題號: 437005

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第3頁

10. (5%) Let X be a discrete random variable such that $f_X(x) = \frac{3}{4} \left(\frac{1}{4}\right)^{x-1}$, where $x \in \mathbb{Z}^+$. If $Y = X^2$, find $f_Y(y)$, where $y \in \{1, 4, 9, ...\}$.

(A)
$$f_Y(y) = \frac{3}{4} \left(\frac{1}{4}\right)^{y-1}$$

(B)
$$f_Y(y) = \frac{3}{4} \left(\frac{1}{4}\right)^{y^2 - 1}$$

(C)
$$f_Y(y) = \frac{3}{4} \left(\frac{1}{4}\right)^{-\sqrt{y}-1}$$

(D)
$$f_Y(y) = \frac{3}{4} \left(\frac{1}{4}\right)^{\sqrt{y}-1}$$

(E) None of the above

二、問答計算題:

- 1. (10%) Consider an experiment in which a fair coin is tossed three times.
 - (a). (3%) What is the sample space (Ω) of all possible outcomes for this experiment?
 - (b). (4%) Define the event E_i as the outcomes where exactly i tosses result in "heads," where i = 0,1,2,3. For each i=0,1,2,3, how many sample points does E_i contain?
 - (c). (3%) Define event F as an event in which at least two of the tosses yield "heads."
- 2. (10%) Consider two independent random variables X and N, where X is uniformly distributed on $(0,2\pi)$ and N follows a Gaussian distribution with probability density function (PDF) $f(N) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{N^2}{2\sigma^2}\right). \text{ Let } Y = X + N. \text{ Determine the conditional PDF } f(X \mid Y).$
- 3. (15%) Let N be a positive integer-valued random variable with the cumulative distribution function (CDF) $F_N(n) = \frac{n}{n+1}$ for each integer $n \ge 1$.
 - (a). (5%) Use the CDF $F_N(n)$ to demonstrate that N is a positive random variable.
 - (b). (5%) Determine the probability mass function (PMF) of N, i.e., $P_N(n)$.
 - (c). (5%) Compute the expected value of N, i.e., $E\{N\}$.

科目名稱:機率【通訊所碩士班甲組】

題號: 437005

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第4頁

4. (15%) Consider an experiment in which a fair coin is tossed n times. Let S_N represent the total number of "heads (=1)" obtained:

$$S_N = B_1 + B_2 + \dots + B_N,$$

where B_i are independent binary random variables with $P(B_i = 1) = P(B_i = 0) = 0.5$ for all i = 0,1,2,...,N.

(a). (5%) Compute the moment generating function (MGF) of S_N , denoted as $M_{S_N}(t)$.

Hint: For a random variable X, its MGF $M_X(t)$ is defined by $M_X(t) = E \left[e^{tX} \right]$.

(b). (10%) The Chernoff bound can be given as

$$P\left(S_{N} \geq N\beta\right) \leq \min_{t \geq 0} \left\{ e^{-tN\beta} M_{S_{N}}\left(t\right) \right\}.$$

Determine the optimal value of *t* and show that

$$P(S_N \ge N\beta) \le 2^{-N(1-\mathcal{H}(\beta))}$$

where $\mathcal{H}(\beta) = -\beta \log_2 \beta - (1-\beta) \log_2 (1-\beta)$.

Hint: Minimizing $e^{-tN\beta}M_{S_N}(t)$ is equal to minimizing $\ln(e^{-tN\beta}M_{S_N}(t))$.