科目名稱:工程數學甲【電機系碩士班戊組選考、庚組、通訊所碩士班乙組選考、電波聯合碩士班選考】

-作答注意事項-

考試時間:100分鐘

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以 2B 鉛筆劃記,不可使用修正液(帶)塗改,未使用 2B 鉛 筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:工程數學甲【電機系碩士班戊組選考、庚組、通訊所碩士班乙組選考、電波聯合碩士 班選考】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題) 共 4 頁第 1 頁

第1-6 題為複選題,每題 5 分,總分 30 分。每題有 5 個選項,其中至少有 1 個是正確答案,答錯 1 個選項者,得 3 分;答錯 2 個選項者,得 1 分;答錯多於 2 個選項或未作答者,該題以零分計算。

1. Consider the linear system $Ax = \mathbf{b}$, where $A = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3] \in \mathbb{R}^{4 \times 3}$, $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ are column vectors of \mathbf{A} , and $\mathbf{b} \in \mathbb{R}^4$ is a non-zero vector. Suppose

$$\mathbf{a}_1 + 2\mathbf{a}_2 = 3\mathbf{a}_3, \ \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3 = \mathbf{b}, \ \mathbf{a}_2 + 2\mathbf{a}_3 \neq \mathbf{0}.$$

Which of the following statements are true?

- (A) The linear system has a finite number of solutions.
- (B) rank([A, b]) is equal to rank(A).
- (C) The rank of **A** is less than or equal to 2.
- (D) $\mathbf{x} = [1, 2, 3]^T$ is a solution of the linear system.
- (E) The vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 are linearly dependent.
- 2. Let

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 2 & 0 & 0 & 0 & 2 \end{bmatrix}.$$

Which of the following statements are true?

- (A) rank(A) = 2.
- (B) trace(\mathbf{A}) = 7.
- (C) $det(A) \neq 0$.
- (D) 3 is an eigenvalue of **A**.
- (E) All eigenvalues of **A** are non-negative.
- 3. Let

$$\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3] = \mathbf{Q}\mathbf{R} = \mathbf{Q} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix},$$

where \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 are column vectors of $\mathbf{A} \in \mathbb{R}^{3 \times 3}$, and $\mathbf{Q} \in \mathbb{R}^{3 \times 3}$ is an orthogonal matrix, i.e., $\mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T$ is the identity matrix. Which of the following statements are true?

(A)
$$\mathbf{a}_3^T \mathbf{a}_1 = 3$$
, (B) $\mathbf{a}_3^T \mathbf{a}_2 = 24$, (C) $\mathbf{a}_3^T \mathbf{a}_3 = 70$, (D) $\mathbf{a}_2^T \mathbf{a}_1 = 3$, (E) $\mathbf{a}_2^T \mathbf{a}_2 = 30$

4. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 1 & 0 & 5 \\ 2 & 2 & 6 \end{bmatrix} = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3],$$

where \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 are column vectors of \mathbf{A} . Let \mathbf{q}_3 be the orthogonal projection of \mathbf{a}_3 onto span $(\mathbf{a}_1, \mathbf{a}_2)$, and $\mathbf{q}_3 = [q_{31}, q_{32}, q_{33}, q_{34}]^T$. Which of the following statements are true?

(A)
$$q_{31} = 4$$
, (B) $q_{32} = 4/3$, (C) $q_{33} = 10/3$, (D) $q_{34} = 22/3$, (E) $\mathbf{a}_1^T \mathbf{q}_3 = 20$.

科目名稱:工程數學甲【電機系碩士班戊組選考、庚組、通訊所碩士班乙組選考、電波聯合碩士 班選考】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第2頁

- Let $A \in \mathbb{R}^{n \times n}$, $AA^T = I$, and A is a non-zero matrix. Which of the following statements are true? 5.
 - (A) trace(A) \neq 0.
 - (B) det(A) = 1.
 - (C) $\operatorname{rank}(\mathbf{A}) = n$.
 - (D) If n = 3, then trace(A) ≤ 3 .
 - (E) All eigenvalues of **A** are real numbers.
- Let $A \in \mathbb{R}^{m \times n}$, where R(A) denotes the column space of A, N(A) denotes the null space of A, and dim(S) denotes the dimension of a subspace S. Which of the following statements are true?
 - (A) If **A** has linearly independent columns, then $\mathbf{A}\mathbf{A}^T$ is nonsingular.
 - (B) rank(\mathbf{A}^T) + dim($N(\mathbf{A}^T)$) = m.
 - (C) $R(\mathbf{A}\mathbf{A}^T) = R(\mathbf{A}^T\mathbf{A})$.
 - (D) If AA^T is nonsingular, then A^TA is also nonsingular.
 - (E) It is possible for a matrix **A** to have $[3, 4, 5]^T$ in $R(\mathbf{A})$ and $[1, -1, 2]^T$ in $N(\mathbf{A}^T)$.

第7-13 題為單選題,總分35分。每題答對5分,答錯或未作答者以0分計。

Find the inverse Laplace transform of $\frac{-5}{s+16}$.

- (A) $5e^{16t}$ (B) $-5e^{16t}$ (C) $-5e^{-16t}$ (D) $5e^{-16t}$
- Which of the following is **wrong**?
 - (A) The Fourier transform of a rectangular pulse of width T and height 1 is $T \operatorname{sinc}\left(\frac{\omega T}{2}\right)$.
 - (B) The Fourier transform of u(t) (unit step function) is $\pi\delta(\omega)$.
 - (C) If f(x) is odd, its Fourier series contains only sine terms.
 - (D) The initial value theorem for the Laplace transform is $\lim_{t\to 0+} f(t) = \lim_{s\to \infty} sF(s)$.
- 9. Which of the following statements about the Gibbs phenomenon is **wrong**?
 - (A) It occurs near discontinuities when approximating a function using its Fourier series.
 - (B) The oscillatory behavior in the Gibbs phenomenon disappears completely as more terms are added to the Fourier series.
 - (C) The Gibbs phenomenon results in a characteristic overshoot near discontinuities, even with a large number of terms.
 - (D) The oscillations caused by the Gibbs phenomenon become narrower as more terms are included.
- 10. Suppose we are given the following information about a signal x[n]:
 - a. x[n] is a real and even signal.
 - b. x[n] has period N=10 and Fourier coefficients a_k .
 - c. $a_{11} = 5$.
 - d. $\frac{1}{10}\sum_{n=0}^{9}|x[n]|^2=50$.

Show that $x[n] = A\cos(Bn + C)$, and specify numerical values for the constants A, B, and C.

科目名稱:工程數學甲【電機系碩士班戊組選考、庚組、通訊所碩士班乙組選考、電波聯合碩士 班選考】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第3頁

(A)
$$A = 10, B = \frac{\pi}{5}, C = 0$$

(B)
$$A = 5$$
, $B = \frac{\pi}{5}$, $C = \frac{\pi}{2}$

(C)
$$A = 10, B = \frac{\pi}{5}, C = \frac{\pi}{2}$$

(D)
$$A = 5$$
, $B = \frac{\pi}{5}$, $C = 0$

11. What is the Fourier transform of $\delta(t+1) + \delta(t-1)$?

(A)
$$e^{-j\omega} + e^{j\omega}$$
 (B) $e^{-j\omega} - e^{j\omega}$ (C) $2icos(\omega)$ (D) $2isin(\omega)$

12. The Fourier transform $X(e^{j\omega})$ of the discrete-time signal $x[n] = \cos\left(\frac{3\pi}{5}n\right)$ is:

$$(A)\frac{\pi}{2}\delta\left(\omega - \frac{3\pi}{5}\right) + \frac{\pi}{2}\delta\left(\omega + \frac{3\pi}{5}\right)$$

(B)
$$\pi\delta\left(\omega - \frac{3\pi}{5}\right) - \pi\delta\left(\omega + \frac{3\pi}{5}\right)$$

(C)
$$\sum_{l=-\infty}^{\infty} \pi \left[\delta \left(\omega - \frac{3\pi}{5} - 2\pi l \right) + \delta \left(\omega + \frac{3\pi}{5} - 2\pi l \right) \right]$$

(D)
$$\sum_{l=-\infty}^{\infty} \pi \left[\delta \left(\omega - \frac{3\pi}{5} - 2\pi l \right) - \delta \left(\omega + \frac{3\pi}{5} - 2\pi l \right) \right]$$

13. The solution to the differential equation y'' - 2y' - 8y = f(t) with y(0) = 1 and y'(0) = 0, using the Laplace transform, is given by:

$$y(t) = Ae^{4t} * f(t) + Be^{-2t} * f(t) + Ce^{4t} + De^{-2t}.$$

where * denotes convolution. What are the correct values of A, B, C, and D?

(A)
$$A = \frac{1}{6}$$
, $B = -\frac{1}{6}$, $C = \frac{1}{3}$, $D = \frac{2}{3}$

(B)
$$A = \frac{1}{3}$$
, $B = \frac{2}{3}$, $C = \frac{1}{6}$, $D = -\frac{1}{6}$

(C)
$$A = \frac{2}{3}$$
, $B = -\frac{1}{3}$, $C = \frac{1}{6}$, $D = \frac{1}{6}$

(D)
$$A = \frac{1}{6}$$
, $B = \frac{1}{6}$, $C = -\frac{1}{3}$, $D = \frac{2}{3}$

第 14 題到第 17 題需要詳明推導計算過程。如推導計算過程錯誤,將酌扣分數或不給分。

14. (7%) Magnetic resonance imaging is a medical imaging technique that uses macroscopic nuclear magnetization (M) of hydrogen in human tissues as its signal source. According to the well-known Bloch equation, the longitudinal magnetization $M_z(t)$ follows the differential equation

$$\frac{dM_Z(t)}{dt} = \frac{M_0 - M_Z(t)}{T_1},$$

where M_0 is the steady-state nuclear magnetization, and T_1 presents the longitudinal relaxation time, which is a tissue-dependent constant. Assume that an excitation pulse is applied to the magnetization right before t = 0 to remove M_z completely; in other words, $M_z(0) = 0$. Find $M_z(t)$ on the interval $(0, \infty)$.

科目名稱:工程數學甲【電機系碩士班戊組選考、庚組、通訊所碩士班乙組選考、電波聯合碩士 班選考】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第4頁

15. (8%) Use separation of variables to find the product solution of u(x, y), which satisfies

$$\frac{1}{y}\frac{\partial u}{\partial x} = \frac{1}{3x}\frac{\partial u}{\partial y}$$

- 16. (10%) Given that an 3D object is enclosed by a surface f(x, y, z) = 0 and the xy plane (i.e., z = 0), where $f(x, y, z) = x^2 + y^2 + z 2$.
 - (1) (4%) Find the normal vector over the surface of this object. Note that the normal vector should be provided in the form of a unit vector here.
 - (2) (6%) What is the surface area of this object?
- 17. (10%) Given that z is a complex variable and \bar{z} represents its complex conjugate.
 - (1) (2%) Sketch the set of points determined by $z\bar{z} = 2$ on the complex plane.
 - (2) (8%) Let C be the contour of your answer in (1) in a positive sense. Solve

$$\int_C \frac{e^{-z}}{z^2 + 1} dz$$