類組:物理類 科目:應用數學(2001)

共_5_頁 第_/_頁

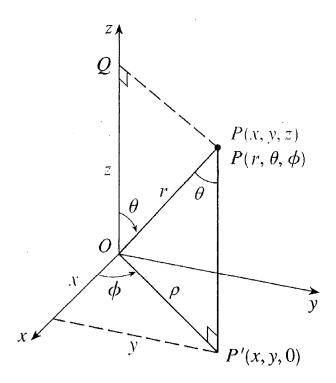
一、單選題(12題,每題5分、不倒扣)

1. Calculate the divergence of the vector field,

$$\vec{\mathbf{v}} = \hat{\mathbf{r}} r^3 \cos \theta + \hat{\boldsymbol{\theta}} r \theta + \hat{\boldsymbol{\phi}} 2 \sin \phi \cos \theta$$

at the point r=2, $\theta=\pi/2$, and $\phi=\pi/6$ in spherical coordinates.

- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2.



- 2. What is the angle ψ between the surfaces defined by $z = x^2 + y^2 3$ and $x^2 + y^2 + z^2 = 9$ at the point (1, 2, 2)? Note that the angle between two surfaces is the angle between their normal vectors at the point of interest.
 - (A) $0 \le \psi < \frac{\pi}{6}$
 - (B) $\frac{\pi}{6} \le \psi < \frac{\pi}{4}$
 - (C) $\frac{\pi}{4} \le \psi < \frac{\pi}{3}$
 - (D) $\frac{\pi}{3} \le \psi < \frac{\pi}{2}$
 - (E) $\psi = \frac{\pi}{2}$.

類組:物理類 科目:應用數學(2001)

共_5_頁第_2_頁

3. Let
$$\mathbb{M} = \begin{bmatrix} 2i & -1+i \\ 1+i & i \end{bmatrix}$$
 and $\mathbb{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

- (A) M is skew-Hermitian.
- (B) The eigenvalues of any skew-Hermitian matrix must be either zero or imaginary.
- (C) M is normal.
- (D) $\mathbb{V} = (\mathbb{I} + \mathbb{M})(\mathbb{I} \mathbb{M})^{-1}$ is unitary.
- (E) All of the above are true.

4. What is the rank of the matrix
$$A = \begin{bmatrix} 2 & 2 & 2 & 2 \\ \frac{17}{10} & \frac{1}{10} & -\frac{17}{10} & -\frac{1}{10} \\ \frac{3}{5} & \frac{9}{5} & -\frac{3}{5} & -\frac{9}{5} \end{bmatrix}$$
?

- (A) 4
- (B) 3
- (C) 2
- (D) 1
- (E) 0.

5. Formally, the sawtooth function

$$f(x) = x + \pi$$
 if $-\pi < x < \pi$ and $f(x+2\pi) = f(x)$

can be represented by a Fourier series as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)],$$

where a_0 , a_n , and b_n $(n \in \mathbb{N})$ are Fourier coefficients given by Euler formulas.

- (A) Because f(x) is not an odd function with respect to the origin, some of the cos(nx) basis terms must be included in the Fourier series.
- (B) The constant term a_0 is just the average value of f(x) in one period, i.e., $a_0 = \pi$.
- (C) $b_n = -\cos(n\pi)/n$.
- (D) Substituting $x = \pi/2$ into the Fourier series of this sawtooth function, we can obtain Leibniz series for π , i.e., $\frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{n}$.
- (E) None of the above is true.

注:背面有試題

台灣聯合大學系統114學年度碩士班招生考試試題

類組:物理類 科目:應用數學(2001)

共 5 頁 第 3 頁

6. The Fourier transform of f(x) is defined by $\mathcal{F}(f)(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx}dx$. So, which of the inverse Fourier transforms, cosine or sine, gives the result:

$$f(x) = \begin{cases} 2, & |x| < 1/2 \\ 0, & |x| > 1/2 \end{cases}$$
?

(A)
$$\int_0^\infty \frac{\sin(k/2)}{k/2} \cos(kx) \, dk$$

(B)
$$\frac{2}{\pi} \int_0^\infty \frac{\sin(k/2)}{k/2} \cos(kx) dk$$

(C)
$$\frac{2}{\pi} \int_0^\infty \frac{\sin(k/2)}{k/2} \sin(kx) dk$$

(D)
$$\int_0^\infty \frac{\sin(k/2)}{k/2} \sin(kx) \, dk$$

- (E) None of the above is true.
- 7. Which set of the following integrations is correct?

(A)
$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi^2$$
 and $\int_{-\infty}^{\infty} \frac{\sin^4 x}{x^4} dx = \pi^4$.

(B)
$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi \quad \text{and} \quad \int_{-\infty}^{\infty} \frac{\sin^4 x}{x^4} dx = \pi.$$

(C)
$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi$$
 and $\int_{-\infty}^{\infty} \frac{\sin^4 x}{x^4} dx = \frac{2}{3}\pi$.

(D)
$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi$$
 and $\int_{-\infty}^{\infty} \frac{\sin^4 x}{x^4} dx = \frac{1}{3}\pi$.

- (E) None of the above is true.
- **8.** While the solution of the integral equation $y(t) \int_0^t \sin(t-\tau)y(\tau) d\tau = t$ is $y(t) = t + \frac{t^3}{6}$, what is the solution of $y(t) + \int_0^t (t-\tau)y(\tau) d\tau = \frac{t^3}{6}$?

(A)
$$y(t) = \sin(t + t^3/6)$$

(B)
$$y(t) = \sin(t) + t^3/6$$

(C)
$$y(t) = \sin(t) + t$$

(D)
$$y(t) = t - \sin(t)$$

(E) None of the above is true.

科目:應用數學(2001) 類組:物理類

共 5 頁第4頁

9.
$$\lim_{n\to\infty} \sum_{k=0}^{\infty} \frac{1}{n^k (k+2)} \binom{n}{k} = ?$$

Hint: The approximation $\lim_{n \to 1} n! \approx \sqrt{2\pi n} \, n^n e^{-n}$ might be useful.

- (A) e+1
- (B) e
- (C) e-1
- (D) 1
- (E) 0.
- **10.** Consider a second-order ODE: $y''(z) + \frac{3z-1}{z(z-1)}y'(z) + \frac{1}{z(z-1)}y(z) = 0$.
 - (A) The indicial equation of the given equation has a repeated root.
 - (B) Because z = 0 is a regular singular point, at least one solution, say $y_1(z)$, is in the form of a Frobenius series.
 - (C) Let the repeated root be $\sigma_1 = \sigma_2 = \sigma$, then $y_1(z)$ is in a form as $y_1(z,\sigma) = \sum_{n=0}^{\infty} a_n(\sigma) z^{\sigma+n}.$
 - (D) Accordingly, $y_2(z) = \left| \frac{\partial}{\partial \sigma} y_1(z, \sigma) \right|$.
 - (E) All of the above are true.
- 11. Consider a set of functions, $\{f(x)\}\$, of the real variable x, defined in the interval $-\infty < x < \infty$, that $\to 0$ at least as quickly as x^{-1} as $x \to \pm \infty$. Which of the following linear operators is *Hermitian* when acting upon $\{f(x)\}$?
 - (A) $\frac{1}{i}\frac{d}{dx} + x^2$ (B) $\frac{d}{dx} + ix^2$ (C) $ix\frac{d}{dx}$ (D) $\frac{d}{dx}$
- 12. The spherical harmonic functions $Y_{\ell}^{m}(\theta,\phi)$ are eigen-functions of the parity operator $\hat{\mathcal{P}}$; that is, $\hat{\mathcal{P}}Y_{\ell}^{m}(\theta,\phi) = pY_{\ell}^{m}(\theta,\phi)$, where p is the corresponding eigenvalue. According to

$$Y_{\ell}^{m}(\theta,\phi) = (-1)^{m} \left[\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!} \right]^{1/2} P_{\ell}^{m}(\cos\theta) \exp(im\phi)$$

and $P_{\ell}^{-m}(x) = (-1)^m \frac{(\ell - m)!}{(\ell + m)!} P_{\ell}^m(x)$, what the eigenvalue p should be?

- (B) -1
- (C) $(-1)^{\ell}$ (D) $(-1)^{m}$

類組:物理類 科目:應用數學(2001)

共 5 頁 第 5 頁

二、計算題(4題,每題10分;若該題區分(a)、(b)兩小題,則各 5分;應詳列計算過程,無計算過程者不予計分)

(-) Following are the differential equations, for $t \ge 0$,

$$\ddot{x} + 2x + y = \cos 2t,$$

$$\ddot{y} + 2x + 3y = 2\cos 2t,$$

which describe a coupled system that starts from rest at the equilibrium position. (a) Show that the subsequent motion takes place along a straight line in the *xy*-plane. And (b) explain the resonant behavior in the solution.

Hint: The question of (a) is readily obtained by using Laplace transforms. To seek a particular solution in (b), it would be easier to take a pair of trial solutions like $x(t) = X \sin(\omega t)$ and $y(t) = Y \sin(\omega t)$.

- (\equiv) The function $y(x) = e^x$ can be spanned by all the linear functions defined in [0, 1] on the linear space.
 - (a) Apply the Gram-Schmidt orthogonalization procedure and the inner product of two continuous functions in [0,1] to minimize the integral

$$I = \int_0^1 \left[(\alpha + \beta x) - e^x \right]^2 dx.$$

What values α and β should be?

(b) Instead of the Gram-Schmidt method, we can linearly transform the function y(x) defined in [0,1] to the other function $y(\xi)$ but defined in $-1 \le \xi \le 1$. Thus, $y(\xi)$ has the representation in terms of the Legendre orthogonal basis $\{P_n(\xi)\}$ such that

$$y(\xi) = \sum_{n=0}^{\infty} c_n P_n(\xi) .$$

Converting back to $x \in [0,1]$, $y(x) = \sum_{n=0}^{\infty} a_n \hat{e}_n(x)$ where $\hat{e}_0(x) = 1$ since $P_0(\xi) = 1$, $\hat{e}_1(x) = \sqrt{3}(2x-1)$ since $P_1(\xi) = \xi$, and so on. As a result, what is the *normalized* basis $\hat{e}_3(x)$?

Hint:
$$(n+1)P_{n+1}(\xi) = (2n+1)\xi P_n(\xi) - nP_{n-1}(\xi)$$
.

(
$$\equiv$$
) Solve $3\frac{\partial u(x,y)}{\partial x} - 2\frac{\partial u(x,y)}{\partial y} + u(x,y) = x$ with $u = 0$ on $2y - 3x = 0$.

(四) Compute the complex integral: $\oint_{C:|z-i|=1} \csc\left(\frac{1}{z-i}\right) dz$.

Hint: Consider the pole at infinity.