國立臺灣師範大學 113 學年度碩士班招生考試試題

科目:電子學 適用系所:電機工程學系

注意:1.本試題共3頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

1. (10 points) Figure 1 shows an inverting amplifier with an ideal OPA and a current meter. Assume that $R_1 = 3 \text{ k}\Omega$, $R_f = 12 \text{ k}\Omega$, and $R_L = 2 \text{ k}\Omega$.

- (a) Find i_m if $v_i = -0.6$ V.
- (b) Find v_i if $i_m = 2 \text{ mA}$.

Figure 1

2. (20 points) Figure 2 shows a BJT amplifier. Assume that $V_{CC} = 10 \text{ V}$, $R_{sig} = 20 \text{ k}\Omega$, $R_{B1} = R_{B2} = 100 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$, and $R_L = 2 \text{ k}\Omega$. The transistor has $\beta = 100$, $V_{BE} = 0.7 \text{ V}$, and the thermal voltage $V_T = 25 \text{ mV}$. Neglect the effect of r_o . (Note: An infinite capacitance means that the capacitance is large enough to act as a short circuit at all signal frequencies of interest. However, the capacitor still blocks dc.)

- (a) Find I_C .
- (b) Find R_i , R_o , and v_o/v_{sig} .

Figure 2

國立臺灣師範大學 113 學年度碩士班招生考試試題

3. (20 points) Figure 3 shows an NMOS amplifier. Assume that $V_{DD} = V_{SS} = 4$ V, $R_D = 2$ k Ω , and $R_S = 5$ k Ω . The NMOS transistor has $V_t = 1$ V, $\mu_n C_{ox} = 400 \,\mu\text{A/V}^2$, $L = 0.2 \,\mu\text{m}$, and $W = 2 \,\mu\text{m}$. Neglect the effect of r_o . (Note: An infinite capacitance means that the capacitance is large enough to act as a short circuit at all signal frequencies of interest. However, the capacitor still blocks dc.)

- (a) Find I_D and g_m .
- (b) Find R_i , and v_o/v_i .

Figure 3

4. (20 points) Figure 4 shows a MOS differential pair. Let $V_{DD} = V_{SS} = 3 \text{ V}$, $\mu_n C_{ox} = 400 \,\mu\text{A}/V^2$, $L = 0.2 \,\mu\text{m}$, $W = 2 \,\mu\text{m}$, $V_t = 1 \,\text{V}$, $I = 1 \,\text{mA}$, $R_D = 4 \,\text{k}\Omega$, and neglect the effect of r_o . Assume that the current source I requires a minimum voltage of 1 V to operate properly.

- (a) For $V_{G1} = V_{G2} = -0.2 \text{ V}$, find V_{S} .
- (b) Let $V_{G1} = V_{G2} = V_{CM}$. What is the highest permitted value of V_{CM} ?
- (c) Let $V_{G1} = V_{G2} = V_{CM}$. What is the lowest value allowed for V_{CM} ?
- (d) Let $v_{id} = V_{G1} V_{G2}$. Find v_o/v_{id} .

Figure 4

國立臺灣師範大學 113 學年度碩士班招生考試試題

- 5. (15 points) Figure 5 shows the equivalent circuit of a voltage amplifier. Assume that $R_{sig}=30~\mathrm{k}\Omega$, $R_i=60~\mathrm{k}\Omega$, $R_o=10~\mathrm{k}\Omega$, $R_L=90~\mathrm{k}\Omega$, $A_{vo}=100~\mathrm{V/V}$, and $C_i=0.05~\mathrm{nF}$.
- (a) Find the amplifier voltage gain V_o/V_{sig} at midband. (i.e. the midband gain A_M)
- (b) Find the upper 3-dB frequency f_H .
- (c) Find $v_o(t)$ for $v_{sig}(t) = 0.1 sin 10^6 t$.

Figure 5

- 6. (15 points) Figure 6 shows a feedback amplifier. Let $R_{D1}=5~\mathrm{k}\Omega,~R_{D2}=10~\mathrm{k}\Omega,~R_1=2~\mathrm{k}\Omega,~R_2=18~\mathrm{k}\Omega,~g_{m1}=g_{m2}=10~mA/V^2.$ For simplicity, neglect r_o of each of Q_1 and Q_2 .
- (a) Determine the feedback topology of this amplifier.
- (b) Find the loop gain $A\beta$.
- (c) Find the closed-loop gain v_o/v_{sig} .

Figure 6