國立臺灣師範大學 113 學年度碩士班招生考試試題

科目:無機化學

適用系所: 化學系

注意:1.本試題共3頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

Cloze Test: Read each paragraph and match a correct answer from the table. (12 points)

A_1	antiferromagnetic	charge	de Broglie equation	diamagnetic
E	ferromagnetic	multiplicity	oxidation numbers	paired electrons
paramagnetic	repulsion	Schrödinger equation.	symmetry	uncertainty

- 1. The energy of a nonbonding orbital is essentially that of an atomic orbital, either because the orbital on one atom has a symmetry that does not match any orbitals on the other atom or the orbital on one atom has a severe energy mismatch with _______-compatible orbitals on the other atom.
- 2. Electrons moving in circles around the nucleus, as in Bohr's theory, can be thought of as standing waves that can be described by the_____.
- 3. Hund's rule of maximum ______ requires that electrons be placed in orbitals to give the maximum total spin possible.
- 4. Formal charge is the apparent electronic _____ of each atom in a molecule based on the electron-dot structure.
- 5. _____ compounds are attracted by an external magnetic field. This attraction results from one or more unpaired electrons behaving as tiny magnets.
- 6. The s and p_z orbitals of nitrogen in ammonia both have_____ symmetry in the C_{3v} point group.

C_{3v}	E	2C ₃	$3\sigma_v$		
· 1	3	0	1		
A_1 , .	1	1	1	2	$x^2 + y^2, z^2$
E	2	- 1	0	$(x, y), (R_x, R_y)$	$(x^2 - y^2, xy), (xz, yz)$

國立臺灣師範大學 113 學年度碩士班招生考試試題

- II. Draw the chemical structure and determine the point groups for the following compounds. The structures must be correct to receive the point group credits. (24 points)
 - (a) Cyclohexane (chair conformation)
 - (b)Diborane
 - (c) H₃O⁺
 - $(d)O_2F_2$
 - (e) S₈ (puckered ring)
 - (f) Borazine (planar)
- III. MO diagrams of N2 and F2 are shown in either (a) or (b). (14 points)
 - 1. Fill electrons into the MO diagrams and name the correct gas $(N_2 \text{ or } F_2)$.
 - 2. Also, draw an O_2 MO diagram, fill in unpaired electrons, and calculate the bond order(s). Total points are only possible after drawing the O_2 MO diagram to calculate the correct bond order(s). If not, no point will be received.

國立臺灣師範大學 113 學年度碩士班招生考試試題

- IV. Draw all of the possible isomers (DO NOT include optical isomers) of the following complexes and assign the point group to each isomer: (20 points)
 - (a) $Pd(NH_3)_2Br_2$
 - (b) Cr(P(CH₃)₃)₃Cl₃
 - (c) Ru(bpy)₂(SCN)₂ bpy: bipyridine
 - (d) $Co(NH_3)_4Cl_2$
 - (e) Fe(NH₃)₂Cl₂(NO₂)₂
- V. The Latimer diagram for sulfur in acidic solution is shown below. Determine the reduction potential for $S_2O_6^{2-}$ to $S_2O_3^{2-}$. Write a balanced equation for this half-reaction. (10 points)

$$HSO_4^- \longrightarrow S_2O_6^{2-} \longrightarrow H_2SO_3 \longrightarrow S_2O_3^{2-} \longrightarrow S \longrightarrow H_2S$$

-0.253 0.569 0.400 0.600 0.144

VI. The TGA analysis of CaOx $^{\circ}$ nH₂O, crystal **A**, is shown below, where Ox is C₂O₄²⁻ and n is an integer. (Ca:40, C:12, O:16) (20 points)

- (a) Write down the chemical formula of compound A, and compounds 1, 2, 3 as shown on above chart.
- (b) Write the balance equations for the reactions that taking place at 500 and 750°C.