國立臺灣師範大學113學年度碩士班招生考試試題

科目:機率與統計 適用系所: 數學系

注意:1.本試題共1頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

1. (10分) How many ways are there to allocate 8 teachers to 3 schools if each school has at least 2 teachers.

- 2. (10分) An urn contains 3 red balls and 4 blue balls. A ball is drawn. If the ball is red, it is kept out of the urn and a second ball is drawn from the urn. If the ball is blue, then it is put back in the urn and a red ball is added to the urn. Then a second ball is drawn from the urn. What is the probability that the first drawn ball was blue, given that the second drawn ball is red?
- 3. (20分) The joint probability density of X and Y is given by

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{y}e^{-(y+x/y)} & x > 0, y > 0\\ 0 & \text{otherwise.} \end{cases}$$

Find E(X) and Cov(X, Y).

4. $(20 \, \hat{\sigma})$ Let X_1, \dots, X_n be independent and identically distributed random variables with probability density function given by

$$f(x;\theta) = \theta x e^{-\frac{1}{2}\theta x^2}, \quad x > 0, \theta > 0.$$

- (a) Find the maximum likelihood estimator of θ .
- (b) Find the method of moment estimator of θ .
- 5. $(20\hat{\sigma})$ Let X be a binomial distributed random variable with parameters 2 and θ . Suppose we want to test the null hypothesis $H_0: \theta = 1/4$ against $H_1: \theta = 3/4$ at the significant level at most $\alpha = 1/16$.
 - (a) Find the rejection region R of the uniformly most powerful test at the significant level at most $\alpha = 1/16$.
 - (b) Suppose we observe that X=2. Find the p-value for this observation of the test.
- 6. (20 $\hat{\sigma}$) For bivariate data on n cases $\{x_i, y_i\}$, consider the linear model with no intercept: $Y_i = \beta x_i + \varepsilon_i$, $i = 1, \dots, n$ where ε_i are independent and identically $\mathcal{N}(0, \sigma^2)$ distribution with fixed but unknown variance $\sigma^2 > 0$.
 - (a) Let $\hat{Y}_i = \hat{\beta}x_i$ be the fitted equation obtained by the least square method. Find the distribution of $\hat{\beta}$.
 - (b) What is the distribution of the residuals sum of the squares, $SS_{RSS} = \sum_{i=1}^{n} (y_i \hat{\beta}x_i)^2$, for the least square fit and what is the unbiased estimator of σ^2 .

(試題結束)