國立臺灣師範大學 113 學年度碩士班招生考試試題

科目:代數 適用系所:數學系

注意:1.本試題共 1 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

- 1. (10 points) Let S_n be the symmetric group of degree n. Let C_m be the cyclic group of order m. Is the group $S_3 \times C_4$ isomorphic to S_4 ? Justify your answer.
- 2. (10 points) Let G, H be groups and let $\theta: G \to H$ be a surjective group homomorphism. If N is a normal subgroup of G and G/N is abelian, prove that $\theta(N)$ is normal in H and $H/\theta(N)$ is abelian.
- 3. For convenience, we say that a finite group G is CLT if G has the following property: "For any positive integer d such that d divides |G|, G has a subgroup of order d."
 - (a) (10 points) Let G be a group of order 20. Show that G is CLT.
 - (b) (10 points) Let p be a prime. If G is an abelian group of order p^k for some positive integer k, is it always true that G is CLT? Justify your answer.
- 4. Let \mathbb{Z} be the ring of integers. Let $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers where $i^2 = -1$. Let $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$.

Prove or disprove each of the following statements.

- (a) (10 points) The ideal (x+1) is a prime ideal in the polynomial ring $\mathbb{Z}[x]$.
- (b) (10 points) 23 is irreducible in $\mathbb{Z}[i]$.
- (c) (10 points) The ideal $I = (2, 1 + \sqrt{-5})$ is a principal ideal in $\mathbb{Z}[\sqrt{-5}]$.
- (d) (10 points) $\mathbb{Z}[i]/(5+i)$ is a field.
- 5. Let \mathbb{Q} be the field of rational numbers. Let $f(x) = x^{35} 15x^2 + 45$ and $g(x) = x^3 5x + 3$ be polynomials over \mathbb{Z} . Suppose that α is a complex number and $f(\alpha) = 0$. Let $\beta = g(\alpha)$.
 - (a) (10 points) Determine $[\mathbb{Q}(\alpha):\mathbb{Q}]$.
 - (b) (10 points) Determine the degree of the minimal polynomial of β over \mathbb{Q} .