國立中正大學 113 學年度碩士班招生考試

試題

[第2節]

科目名稱	機率
系所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 書記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 113 學年度碩士班招生考試試題

科目名稱:機率

本科目共2頁第1頁

系所組別:通訊工程學系-通訊甲組

1) (15 points) Let $\Omega = \{1, 2, 3, 4, 5, 6\}$ be the sample space. Define three events: $A = \{1, 2\}$, $B = \{2, 3\}$, and $C = \{4, 5, 6\}$. The probability measure is unknown, but it satisfies the three axioms of probability.

- a) (5 points) What is the probability of $A \cap C$?
- b) (5 points) What is the probability of $A \cup B \cup C$?
- c) (5 points) State a condition on the probability of either B or C that would allow them to be independent events.

2) (20 points) The probability density function (pdf) of a random variable X is shown in Fig. 1.

Fig. 1: pdf of X

- a) (5 points) Compute the value of A.
- b) (10 points) Find the cumulative distribution function (cdf) of X, that is, $F_X(x)$.
- c) (5 points) Compute the probability of the event $\{2 \le X < 3\}$.

3) (25 points) Consider a communication channel corrupted by noise. Let X be the value of the transmitted signal and Y the value of the received signal. Assume that the conditional density of Y given X is Gaussian, that is,

$$f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-x)^2}{2\sigma^2}\right)$$

and that X takes on only the values +1 and -1 equally likely.

- a) (5 points) Find the pdf of X, that is, $f_X(x)$.
- b) (10 points) Find the pdf of Y, that is, $f_Y(y)$.
- c) (10 points) What is the conditional density of X given Y, that is, $f_{X|Y}(x|y)$.

國立中正大學 113 學年度碩士班招生考試試題

科目名稱:機率 本科目共 2 頁 第 2 頁

系所組別:通訊工程學系-通訊甲組

4) (20 points) Let X_1 and X_2 be independent and exponentially distributed random variables with pdf

$$f_{X_i}(x) = rac{1}{\mu} \exp\left(-rac{x}{\mu}
ight) u(x), \quad i=1,2,$$

where $\mu > 0$ and u(x) is the unit step function. Define $Z \triangleq \max(X_1, X_2)$.

- a) (10 points) Find the cdf of Z, that is, $F_Z(z)$.
- b) (10 points) Find the pdf of Z, that is, $f_Z(z)$.
- 5) (20 points) In your physics courses, you have studied the concept of momentum p = mv in the deterministic, that is, nonrandom sense. In reality, measurements of mass m and velocity v are never precise, thereby giving rise to an unavoidable uncertainty in these quantities. In this problem, we treat these quantities as random variables. So, consider a random variable mass M with given pdf $f_M(m)$ and a random variable velocity V with given pdf $f_V(v)$. We are also given the averages $\mu_M = E[M]$ and $\mu_V = E[V]$ (that would presumably correspond to our measurements in the physics course). Assume that M and V are independent and nonnegative random variables.
 - a) (5 points) Express the cdf of the momentum P = MV, that is, $F_P(p)$, in terms of the known pdf's $f_M(m)$ and $f_V(v)$.
 - b) (10 points) Find the pdf of P = MV, that is, $f_P(p)$, in terms of $f_M(m)$ and $f_V(v)$.
 - c) (5 points) Determine the expected value of the momentum $\mu_P = E[P]$ as a function of μ_M and μ_V .