國立中正大學 113 學年度碩士班招生考試

試 題

[第2節]

科目名稱	線性代數
条所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 113 學年度碩士班招生考試試題

科目名稱:線性代數

本科目共 1 頁 第 1 頁

系所組別:通訊工程學系-通訊甲組

- 1. Let $C = \begin{bmatrix} a & b \\ 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $E = \begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}$. Answer the following questions with the appropriate matrix names (C, D or E). Note: No partial scores are given for each question.
 - a. (5 pts.) Identify matrices that are row equivalent when a is 1 and b is 0.
 - b. (5 pts.) Determine which matrix has $\{0\}$ as the orthogonal complement of its row space when a is 0 and b is 1.
 - c. (5 pts.) Which of these matrices satisfies the condition that the rank plus the nullity equals 2?
 - d. (5 pts.) Which matrix is not full-rank when a and b are 1's?
 - e. (5 pts.) Identify the matrix that contains row vectors that can span R^2 for all real numbers a and b, given that a is not equal to b.
 - f. (5 pts.) Determine which matrix could be singular, given that the product of a and b is not equal to 0.

2. Determinant identity

- a. (10 pts.) For a given matrix $\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$, identify all possible matrices \mathbf{B} , where the last row of \mathbf{B} is $\mathbf{0}$, such that the determinants of \mathbf{AB} and \mathbf{BA} are equal.
- b. (25 pts.) Prove that if A and B are matrices of sizes $m \times n$ and $n \times m$, then $\det(I_m + AB) = \det(I_n + BA)$. Hint: $\begin{bmatrix} I_n & -B \\ A & I_m \end{bmatrix}$.
- 3. Let $T_1 : \mathbf{P}_1 \to \mathbf{P}_2$ be the linear transformation defined by $T_1(\mathbf{p}(x)) = x \cdot \mathbf{p}(x)$ and let $T_2 : \mathbf{P}_n \to \mathbf{P}_n$ be the linear operator defined by $T_2(\mathbf{p}(x)) = \mathbf{p}(x+1)$, where $B = \{1, 2x\}$ and $B' = \{1, x, 2x^2\}$ are bases for \mathbf{P}_1 and \mathbf{P}_2 , respectively. Every case requires <u>detailed information</u>.
 - a. (10 pts.) Determine the coordinate vectors of $(x + 1)_B$ and $(x^2 + x)_{B'}$.
 - b. (10 pts.) Represent the linear transformation T_1 from P_1 to P_2 as the matrix $[T_1]_{B\to B'}$.
 - c. (10 pts.) Find the matrix representation $[T_2]_{B'}$ of the linear transformation T_2 in P_2 .
 - d. (5 pts.) Show the matrix representation of the composition of two linear transformations $[T_2 \circ T_1]_{B \to B^*}$.