國立中山大學 113 學年度 碩士班暨碩士在職專班招生考試試題 科目名稱:數位系統設計【IC設計所碩士班】 #### 一作答注意事項- 考試時間:100分鐘 - 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。 - 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。 - 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。 - 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。 - 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。 - 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。 - 試題採雙面列印,考生應注意試題頁數確實作答。 - 違規者依本校招生考試試場規則及違規處理辦法處理。 ### 國立中山大學 113 學年度碩士班暨碩士在職專班招生考試試題 科目名稱:數位系統設計【IC設計所碩士班】 題號: 483001 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第1頁 [Problem 1] (20%) Implement the following Boolean function F(w, x, y, z) = xy + w'x'z' + wx'y'z' + wx'yz. - (a) by using only NOR gates. (5%) - (b) by using only NAND gates. (5%) - (c) by using the simplest sum-of-products form (5%) - (d) by drawing the logic diagram using a multiplexer (5%) Please note that for (a), (b) and (c) you need to show the final Boolean function and how you derive the function. #### [Problem 2] (12%) Short answer questions: - (a) Provide an example to demonstrate that a Boolean function can have more than one simplest form of expression, indicating its non-uniqueness. (3%) - (b) Provide an overview of the hardware structure of a sequential circuit and utilize this structure to explain how a sequential circuit is different in functionality and design from a combinational circuit. (4%) - (c) Present several waveform diagrams to illustrate and clarify the concepts of setup time and hold time in a D flip-flop. (5%) [Problem 3] (18%) Design an asynchronously resettable positive edge-triggered finite state machine that accepts a one-bit input d and generates two one-bit outputs x and y. x should be 1 if d has been 0 for at least three cycles (not necessarily consecutively). - (a) Give Verilog/VHDL codes of an asynchronously resettable positive edge-triggered flip-flop. (3%) - (b) Draw the state transition diagram and define each state clearly. (5%) - (c) Write RTL Verilog/VHDL codes to implement the finite state machine you designed in (b). (10%) [Problem 4] (20%) (a) Assume that the 4-bit binary adders are available. Please design a combinational circuit for the addition of two BCD digits using the 4-bit binary adder. Please draw the final logic circuit of the BCD adder with the 4-bit binary adder circuit block. Please note that you don't have to show the details of the 4-bit binary adder. (10%) (b) Design a combinational circuit that generates the 9's complement of a BCD digit. Please note that you need to show the final Boolean function and how you derive the function. (10%) [Problem 5] (15%) (a) Design a counter with T flip-flops that goes through the following binary repeated sequence: 0, 1, 3, 7, 6, 4. Show that when binary states 010 and 101 are considered as don't care conditions, the counter may not operate properly.(10%) (b) Find a way to correct the design. (5%) Please note that you need to show the final Boolean function, the state diagram and how you derive the function. [Problem 6] (15%) A circuit for a gated D-latch is shown in Fig. 1. Assume that the propagation delay through a NAND gate or an inverter is 1 ns. Complete the timing diagram given in the Fig. 2, which shows the signal values with 1 ns resolution. Please note that you need to redraw the timing diagram in your answer sheet. ## 國立中山大學 113 學年度碩士班暨碩士在職專班招生考試試題 科目名稱:數位系統設計【IC設計所碩士班】 題號:483001