科目:電子學 適用系所:電機工程學系 注意:1.本試題共 4 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。 1. (20 points) Figure 1(a) shows an amplifier composed of a cascade of three stages. Each stage is a voltage amplifier, which is modeled as shown in Figure 1(b). Assume that $R_{sig} = 20 \text{ k}\Omega$, $R_L = 1 \text{ k}\Omega$, and the parameters of each amplifier are listed as follows. | | | | <u> </u> | |-------|-------|----------------------|----------| | Stage | R_i | R_o | A_{vo} | | A_1 | 50 kΩ | $5~\mathrm{k}\Omega$ | 10 V/V | | A_2 | 20 kΩ | 10 kΩ | 20 V/V | | A_3 | 90 kΩ | 1 kΩ | 1 V/V | Find v_{o1}/v_{sig} , v_o/v_i , i_o/i_i , and the power gain P_o/P_i . 2. (20 points) Figure 2 shows an amplifier composed by an ideal op Amp. Figure 2 - (1) Assume that $v_1 = 0 \text{ V}$, $v_2 = 2 \text{ V}$, $R_1 = R_3 = 1 \text{ k}\Omega$, and $R_2 = R_4 = 2 \text{ k}\Omega$. Find v_0 . - (2) Assume that $v_1 = 2\sin(10t) 0.01\sin(10^4t)$, V, $v_2 = 2\sin(10t) + 0.01\sin(10^4t)$, V. Find v_0 for each case. - (a) $R_1 = R_2 = R_3 = R_4 = 2 \text{ k}\Omega$. - (b) $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = 4 \text{ k}\Omega$, and $R_4 = 8 \text{ k}\Omega$. - (c) $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, and $R_4 = 3 \text{ k}\Omega$. 3. (20 points) Figure 3 shows an amplifier composed by an *npn* bipolar junction transistor. Figure 3 Assume that $V_{CC}=10~{\rm V},~R_{B1}=60~{\rm k}\Omega, R_{B2}=40~{\rm k}\Omega, R_{C}=1~{\rm k}\Omega,~R_{E1}=200~\Omega,~R_{E2}=800~\Omega,$ $R_{sig}=10~{\rm k}\Omega,~R_{L}=10~{\rm k}\Omega,~V_{BE}=0.7~{\rm V},~\beta=100,$ the thermal voltage $V_{T}=25~m{\rm V},$ and $r_{o}=\infty$. - (1) Find the dc voltages: V_B and V_C . - (2) Assume that the capacitors C_1 , C_2 , and C_3 act as a perfect short circuit as far as the signal is concerned. Find the input resistance R_{in} and the overall voltage gain v_o/v_{sig} . - 4. Fig. 4 shows a common-source amplifier biased by an ideal current source *I*. Let $R_{\text{sig}} = R_D = R_L = 50 \text{ k}\Omega$, $R_G = 1 \text{ M}\Omega$, $C_{C1} = C_{C2} = 0.1 \text{ }\mu\text{F}$, and $C_S = 5 \text{ }\mu\text{F}$. The NMOS transistor is specified to have $g_m = 4 \text{ mA/V}$, $C_{gs} = 20 \text{ fF}$, and $C_{gd} = 5 \text{ fF}$. Ignore the channel-length modulation, i.e., $\lambda = 0$. - (a) (10 points) Find the lower 3-dB frequency f_L using the method of short-circuit time constants. - (b) (10 points) Find the upper 3-dB frequency f_H using the method of open-circuit time constants. 5. (20 points) The feedback amplifier of Fig. 5 consists of a common-gate amplifier formed by Q_1 and R_D , and a feedback circuit formed by the capacitive divider (C_1 , C_2) and the common-source transistor Q_f . Note that the bias circuit for Q_f is not shown. Assume that C_1 and C_2 are sufficiently small that their loading effect on the common-gate amplifier can be neglected. Also neglect r_o and body effect. Find the values of $A_f \equiv V_o/I_s$, $R_{\rm in}$, and $R_{\rm out}$ for the case in which $g_{m1} = 5$ mA/V, $g_{mf} = 2$ mA/V, $R_D = 10$ k Ω , $C_1 = 0.9$ pF, $C_2 = 0.1$ pF.