國立臺灣師範大學 112 學年度碩士班招生考試試題

科目:代數 適用系所:數學系

注意:1.本試題共1頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

- Let \mathbb{Z} be the ring of integers. Let \mathbb{Q} be the field of rational numbers.
- 1. Let p be a prime and let G be a cyclic group of order p^3 .
 - (a) (5 points) Find the number of elements of order p^2 in G.
 - (b) (10 points) Find the number of elements of order p in the direct product $G \times G$.
- 2. Let N, A, B be subgroups of the group G. Suppose that $N \triangleleft G$ and $A \triangleleft B$.
 - (a) (5 points) Show that $AN \triangleleft BN$.
 - (b) (10 points) If B/A is abelian, show that BN/AN is abelian.
- 3. Let G be the dihedral group of order 144. So G is a group generated by two elements a and b where a has order 72, b has order 2 and $bab^{-1} = a^{-1}$.
 - (a) (10 points) Determine the number of Sylow 2-subgroups of G.
 - (b) (10 points) Find the center of G.
- 4. Prove or disprove each of the following statements.
 - (a) (10 points) In an integral domain, every prime element is irreducible.
 - (b) (10 points) $\mathbb{Z}[\sqrt{-7}]$ is a unique factorization doamin (UFD).
 - (c) (10 points) If M is a maximal ideal of an integral domain R, then M[x] is a maximal ideal of the polynomil ring R[x].
- 5. (10 points) Let α be the real number $7 + \sqrt[5]{1 + \sqrt{3}}$. Find the degree of the field extension $[\mathbb{Q}(\alpha) : \mathbb{Q}]$.
- 6. (10 points) Let $\alpha = \sqrt[3]{2}$ and $\beta = \sqrt[3]{5}$. Is it true that $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\alpha + \beta)$? Justify your answer.