國立臺灣師範大學 112 學年度碩士班招生考試試題

科目:高等微積分

適用系所:數學系

注意:1.本試題共2頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

- 1. Decide which of the following statements are true and which are false. Prove the true ones and give counterexamples for the false ones.
 - (a) (6 points) Let f be a differentiable function on \mathbb{R} . If f(0) = 1 and $|f'(x)| \leq M$ for all $x \in \mathbb{R}$, then $|f(x)| \leq M|x| + 1$.
 - (b) (6 points) If f and g are differentiable on [a, b], and if f' and g' are Riemann integrable on [a, b], then

$$\int_a^b f'(x)g(x)dx + \int_a^b f(x)g'(x)dx = 0$$

if and only if f(a)g(a) = f(b)g(b).

- (c) (6 points) Every continuous real function f(x) defined on an closed interval [a, b] has an antiderivative.
- (d) (6 points) If $f \times f$ is Riemann integrable on [a, b], then f is Riemann integrable on [a, b].
- (e) (6 points) A continuous function maps Cauchy sequences to Cauchy sequences.
- 2. (10 points) Suppose that $f:(-\infty,\infty)\to\mathbf{R}$ is continuous and that

$$\lim_{x \to \pm \infty} f(x) = L.$$

Prove that the function f is uniformly continuous on \mathbf{R} .

3. (a) (5 points) If f is a bounded function. Prove that

$$\sup_{x \in [a,b]} f \times f = (\sup_{x \in [a,b]} |f|)^2.$$

(b) (5 points) If f is integrable on [a, b], prove that $f \times f$ is integrable on [a, b]. The following formula can be used directly.

$$\inf_{x \in [a,b]} f \times f = (\inf_{x \in [a,b]} |f|)^2.$$

- 4. Let f be a continuous function on [a, b].
 - (a) (5 points) Describe the definitions of the lower sum and the lower integral of f.

(背面尚有試題)

國立臺灣師範大學 112 學年度碩士班招生考試試題

(b) (5 points) Let $f(x_0) \neq 0$ for some $x_0 \in [a, b]$. Prove that

$$(L)\int_a^b |f(x)|dx > 0,$$

where the symbol (L) \int_a^b is the lower integral.

- (c) (3 points) By the result (b), show that $\int_a^b |f(x)| dx = 0$ if and only if f(x) = 0 for all $x \in [a, b]$.
- 5. (10 points) Prove that $f(x) = \sum_{k=1}^{\infty} \sin(kx)/k$ converges for each $x \in \mathbf{R}$.
- 6. (a) (3 points) Describe the Green's theorem.
 - (b) (12 points) Give two functions defined on $\mathbb{R}^2 \setminus (0,0)$ as follows.

$$f(x,y) = -\frac{y}{x^2 + y^2}, \ g(x,y) = \frac{x}{x^2 + y^2}.$$

Let C be a simple, closed, and positively oriented curve. Compute

$$\int_C f dx + g dy.$$

- 7. (a) (2 points) Describe the definition of a Jordan region.
 - (b) (10 points) Let E be a Jordan region in \mathbf{R}^2 , where $(x,y) \in E$. Prove that

$$\lim_{k \to \infty} \iint_E \cos(x/k) e^{y/k} dA$$

exists, and find its value.

(試題結束)