國立臺灣師範大學 112 學年度碩士班招生考試試題

科目:數學基礎

適用系所:資訊工程學系

注意:1.本試題共2頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

Some notation:

- A vector refers to a column vector with real entries, for example, $v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3$.
- The **span** of a finite nonempty subset of \mathbb{R}^n is a subspace of \mathbb{R}^n .
- The **transpose** of matrix A is denoted by A^T whose (i,j)-entry is the (j,i)-one of A.
- Let T be a linear operator on \mathcal{R}^n and $\mathcal{B} = \{b_1, b_2, ..., b_n\}$ be a basis for \mathcal{R}^n . The matrix $[[T(b_1)]_{\mathcal{B}} \ [T(b_2)]_{\mathcal{B}} \ \cdots \ [T(b_n)]_{\mathcal{B}}]$ is called the **matrix** representation of T with respect to \mathcal{B} or the \mathcal{B} -matrix of T, denoted by $[T]_{\mathcal{B}}$.
- 1. (a) (4 points) Determine the value of r for which v is in the span of S, where

$$S = \left\{ \begin{bmatrix} -1\\2\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\} \text{ and } v = \begin{bmatrix} 2\\r\\-8 \end{bmatrix}.$$

(b) (6 points) Find a basis for the column space and null space of

$$\begin{bmatrix} -1 & 2 & 1 & -1 \\ 2 & -4 & -3 & 0 \\ 1 & -2 & 0 & 3 \end{bmatrix}.$$

2. (10 points) Suppose that $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation such that

$$T\left(\begin{bmatrix} -1\\1\\1\end{bmatrix}\right) = \begin{bmatrix} 0\\1\\0\end{bmatrix}, \ T\left(\begin{bmatrix} 1\\-1\\1\end{bmatrix}\right) = \begin{bmatrix} 4\\-1\\2\end{bmatrix} \text{ and } T\left(\begin{bmatrix} 1\\1\\-1\end{bmatrix}\right) = \begin{bmatrix} -2\\3\\-2\end{bmatrix}.$$

Determine
$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 for any $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ in \mathcal{R}^3 .

3. (10 points) Let $\mathcal{A} = \{u_1, u_2, ..., u_n\}$ be a basis for \mathcal{R}^n . Then, $\mathcal{B} = \{u_1, u_1 + u_2, ..., u_n\}$

$$u_1+u_n$$
} is also a basis for \mathcal{R}^n . If v is a vector in \mathcal{R}^n and $[v]_{\mathcal{A}} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$, compute

 $[v]_{\mathcal{B}}$.

4. (10 points) For the matrix $A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 17 & -1 \\ 4 & -1 & 17 \end{bmatrix}$, find an orthogonal matrix P and a diagonal matrix D such that $P^TAP = D$.

國立臺灣師範大學 112 學年度碩士班招生考試試題

- 5. (10 points) Let W, a subspace, be the orthogonal complement of Span $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$.
 - (a) Find the orthogonal projection matrix P_W for W. (6 points)
 - (b) Find the vector \mathbf{w} in W that is closest to vector $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 2 \end{bmatrix}$. (4 points)
- 6. (15 points) Let A be a set of size m, and let B be a set of size n, where m and n are positive integers.
 - (a) How many functions $f: A \rightarrow B$ can be defined?
 - (b) How many 1-1 functions $f: A \rightarrow B$ can be defined?
 - (c) How many onto functions $f: A \rightarrow B$ can be defined for n = 2?
- 7. (5 points) Let p be a prime number, and let x be a positive integer. Show that if $1 \cdot 2 \cdot ... \cdot (p-1) = 1 \cdot 2 \cdot ... \cdot (p-1) \cdot x$, then $x \equiv 1 \pmod{p}$.
- 8. (10 points) Let $A = \{a, b\}$. Find all possible binary relations R on A such that R is **neither** reflexive **nor** transitive, or show that there is no such binary relation.
- 9. (15 points) Let G be a **connected simple** graph with n vertices and m edges, where $n \ge 2$. Assume that there are n-1 vertices whose degrees are pairwise distinct.
 - (a) Show that exactly two vertices have degree $\lfloor n/2 \rfloor$.
 - (b) Given m + n = 155, find n and m.
- 10. (5 points) Let n be a positive integer. Derive a closed formula for

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}.$$

Note that the operations that can be used in a closed formula are arithmetic operations $(+, -, \times, /)$ and taking powers.