## 國立臺北科技大學 112 學年度碩士班招生考試

## 系所組別:2110 電機工程系碩士班甲組

## 第一節 電路學 試題

第1頁 共2頁

## 注意事項:

- 1.本試題共 10 題,每題 10 分,共 100 分。
- 2.不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。
- 3.全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. In Figure 1, please find the value of  $V_o$ , where  $B_1$  and  $B_2$  are matrixes of backward transmission parameters, equal to  $B_1 = \begin{bmatrix} 0.5 & 2\Omega \\ 1.5S & 4 \end{bmatrix}$  and  $B_2 = \begin{bmatrix} 2 & 0\Omega \\ 0S & 1 \end{bmatrix}$ , respectively. (10%)



2. In Figure 2, please find the current  $i_x$  using the node-voltage method. (10%)



Figure 2.

3. In Figure 3, please find the current i using the supernode analysis. (10%)



Figure 3.

4. In Figure 4, please find the power of the 16A current source using the mesh-current method. (10%)



Figure 4.

5. In Figure 5, please find the power dissipated in  $1\Omega$  using the supermesh analysis. (10%)



Figure 5.

6. In Figure 6, at t=0.5s, please find  $v_1$ ,  $v_2$  and the energy stored in the transformer, called w, where the values of the primary self-inductance  $L_1$ , the secondary self-inductance  $L_2$ , and the coupling coefficient k are 9H, 4H, and 0.5, respectively. (3%, 3%, 4%)



Figure 6.

7. Figure 7(a) shows a low-pass filter circuit, where  $v_{in}(t)$  is shown in Figure 7(b). Accordingly, in the steady state, how about the voltage expression for the fifth harmonic (n=5) of  $v_{in}(t)$  after this circuit, namely,  $v_{o-5}(t)$ ? (10%)



Figure 7.

注意:背面尚有試題

- 8. In Figure 8, an element has the voltage and current defined. If  $v(t) = 1 + 2\sin(\omega t + 30^{\circ}) + 3\cos(2\omega t + 60^{\circ}) + 4\cos(3\omega t 60^{\circ}) \text{ V} \text{ and }$  $i(t) = 4 + 3\cos(\omega t + 60^{\circ}) + 2\cos(2\omega t 30^{\circ}) + \cos(4\omega t + 30^{\circ}) \text{ A, then find the rms values of}$ 
  - v(t) and i(t), namely,  $V_{rms}$  and  $I_{rms}$ , and the real power, namely, P. (3%, 3%, 4%)



Figure 8.

9. In Figure 9, (a) find the Thevenin equivalent looking from the terminals a and b; (b) based on (a), find the maximum power transfer under the condition that k is a coupling coefficient of 0.8 and the load  $Z_L$  is purely resistive. (5%, 5%)



Figure 9.

10. In Figure 10, if  $v(t)=20\cos(20t+30^\circ)$  V and  $i(t)=-5\sin(20t-30^\circ)$  A, then calculate out the real power P and the imaginary power Q. (5%, 5%)



Figure 10.

|   |  | 81 |  |
|---|--|----|--|
|   |  |    |  |
|   |  |    |  |
|   |  |    |  |
|   |  |    |  |
|   |  | e. |  |
| z |  |    |  |
|   |  |    |  |
|   |  |    |  |
|   |  |    |  |
|   |  |    |  |
|   |  |    |  |
|   |  |    |  |
|   |  |    |  |