國立臺南大學103學年度 電機工程學系碩士班 招生考試 電子學 試題卷

共九題，每題配分標明於題目後，合計 100 分。

1．Explanation：（15\％）
（a）What is channel length modulation in MOSFET and the effect on output resistance of MOSFET？
（b）Describe the BJT modes of operation and the current flow in an npn transistor biased to operate in active mode．
（c）Write down the equation of a pn junction diode and draw the current－voltage curve．

2．The circuit in Fig． 1 utilizes an ideal op amp．（15\％）
（a）Find I_{1}, I_{2}, I_{3} ，and V_{X} ．
（b）If V_{O} is not to lower than -13 V ，find the maximum allowed value for R_{L} ．
（c）If R_{L} is varied in the range 100Ω to $1 \mathrm{k} \Omega$ ，what is the corresponding change in I_{L} and in V_{O} ？

Fig． 1

3．The emitter follower in Fig． 2 is used to connect a source with $R_{\mathrm{sig}}=10 \mathrm{k} \Omega$ to a load $R_{\mathrm{L}}=1 \mathrm{k} \Omega$ ．The transistor is biased at $I=5 \mathrm{~mA}$ ，utilizes a resistance $R_{\mathrm{B}}=40 \mathrm{k} \Omega$ ，and has $\beta=100$ and $V_{\mathrm{A}}=100$ V．(10%)
（a）Find $R_{\mathrm{ib}}, R_{\mathrm{in}}, G_{v}, G_{\mathrm{vo}}$ ，and R_{out} ．
（b）What is the largest peak amplitude of an output sinusoid that can be used without the transistor cutting off？

Fig． 2

4．For the Darlington voltage follower in Fig． $3:(10 \%)$
（a）Show that：

$$
\begin{aligned}
& R_{\text {in }}=\left(\beta_{1}+1\right)\left[r_{\mathrm{e} 1}+\left(\beta_{2}+1\right)\left(r_{\mathrm{e} 2}+R_{E}\right)\right] \\
& R_{\text {out }}=R_{E} \|\left[r_{e 2}+\frac{r_{e 1}+\left[R_{s i g} /\left(\beta_{1}+1\right)\right]}{\beta_{2}+1}\right] \\
& \frac{V_{0}}{V_{s i g}}=\frac{R_{E}}{R_{E}+r_{e 2}+\left[r_{e 1}+R_{s i g} /\left(\beta_{1}+1\right)\right] /\left(\beta_{2}+1\right)}
\end{aligned}
$$

（b）Evaluate $R_{\text {in }}, R_{\text {out }}$ ，and $V_{o} / V_{\text {sig }}$ for the case $I_{E 2}=5 \mathrm{~mA}, \beta_{I}=\beta_{2}=100, R_{E}=1 \mathrm{k} \Omega$ ，and $R_{\text {sig }}=100 \mathrm{k} \Omega$ ．

$$
V_{\mathrm{CC}}
$$

Fig． 3

5．Find $V_{E}, V_{C l}$ ，and $V_{C 2}$ in the circuit of Fig．4．（10\％）

Fig． 4

6．The four MOS switches in Fig． 5 are driven by a non－overlapping two－phase clock． Show that the operation of the circuit of Fig． 5 during the two clock phases can realize a non－inverting switched－capacitor integrator．（10\％）

Fig． 5

7．For the Darlington voltage follower in Fig．6，evaluate $R_{i n}, R_{\text {out }}$ ，and $V_{o} / V_{\text {sig }}$ for the case $\mathrm{I}_{\mathrm{E} 2}=5 \mathrm{~mA}, \beta_{1}=\beta_{1}=100, \mathrm{R}_{\mathrm{E}}=1 \mathrm{k} \Omega$ ，and $\mathrm{R}_{\text {sig }}=100 \mathrm{k} \Omega$ ．（ 10% ）

Fig． 6

8．A series－shunt feedback amplifier employs a basic amplifier with input and output resistance each of $1 \mathrm{k} \Omega$ and gain $\mathrm{A}=2000 \mathrm{~V} / \mathrm{V}$ ．The feedback factor $\beta=0.1 \mathrm{~V} / \mathrm{V}$ ．Find the gain A_{f} ，the input resistance $R_{i f}$ ，and the output resistance $R_{o f}$ of the closed－loop amplifier．（10\％）

9．Consider a feedback amplifier for which the open loop gain $A(s)$ is given by

$$
\mathrm{A}(\mathrm{~s})=\frac{1000}{\left(1+s / 10^{4}\right)\left(1+s / 10^{5}\right)^{2}}
$$

If the feedback factor β is independent of frequency，find the frequency at which the phase shift is 180° ，and find the critical value of β at which oscillation will begin．（10\％）

