國立清華大學101學年度碩士班考試入學試題

系所班組別:數學系應用數學組

考試科目(代碼):高等微積分(0201)

- 1. (20 points) Let E be a set in \mathbb{R}^2 and $\pi: \mathbb{R}^2 \to \mathbb{R}$ is the projection map $\pi(x,y)=x$.
 - (a) If E is compact, should $\pi(E)$ be compact? Explain! (6 points)
 - (b) If E is open, should $\pi(E)$ be open? Explain! (7 points)
 - (c) If E is closed, should $\pi(E)$ be closed? Explain! (7 points)
- 2. (16 points) Evaluate
 - (a) $\lim_{n\to\infty} \left[(1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{n}{n}) \right]^{1/n}$. (8 points)
 - (b) $\int_{-1}^{2} |x| d|x|$. (8 points)
- 3. (12 points) Let $f:[0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{2^n}, n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is Riemann integrable on [0, 1]. What is $\int_0^1 f(x)dx$?

- 4. (10 points) Show that the function $f(x) = \sum_{n=1}^{\infty} \frac{x^2}{x^2 + n^2}$ is continuous on \mathbb{R} .
- 5. (10 points) Consider the function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(\mathbf{x}) = ||A\mathbf{x}||$, where A is a nonsingular $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$. Check at what \mathbf{x} is f differentiable and find $Df(\mathbf{x})$.
- 6. (10 points) Let F(x) be defined by

$$F(x) \equiv \int_0^x \left(\int_t^x \sqrt{1 + s^3} ds \right) dt.$$

Explain why F is differentiable at each $x \in (0, \infty)$ and find F'(x).

國立清華大學 101 學年度碩士班考試入學試題

系所班組別:數學系應用數學組

考試科目(代碼):高等微積分(0201)

7. (10 points) Suppose U is a non-empty open set in \mathbb{R}^2 and $f: U \to \mathbb{R}^2$ is continuously differentiable with its Jacobian $J(f)(\mathbf{x}) \neq 0$ on U. Show that

$$\lim_{r\to 0^+} \frac{area(f(B_r(\mathbf{x})))}{area(B_r(\mathbf{x}))} = |J(f)(\mathbf{x})|,$$

for every $\mathbf{x} \in U$. $(B_r(\mathbf{x}))$ is the disc of radius r centered at \mathbf{x} .)

- 8. (12 points) Consider the vector field $\mathbf{v} = (2xe^y y\sin x, \ x^2e^y + \cos x + 2y)$, and let C be the semi-circle $\{(x,y): x \geq 0, x^2 + y^2 = 1\}$ oriented counterclockwise.
 - (a) Find a function $f: \mathbb{R}^2 \to \mathbb{R}$ so that $\nabla f = \mathbf{v}$. (6 points)
 - (b) Evaluate the line integral

$$\int_C \mathbf{v} \cdot d\mathbf{r}$$

(6 points)