元智大學 101 學年度研究所 碩士班 招生試題卷

先進能源碩

组別: 能源技術組

科目: 工程數學

用紙第 / 頁共 2 頁

●不可使用電子計算機

1. Using Variation of Parameters to find a solution of the following equation. (16 %)

$$y'' - 4y' + 4y = (x+1)e^{2x}$$

2. Using the method of Laplace Transformation to solve the initial value problem of y(t). (17%)

$$y'' + 2y' + y = t e^{-t}$$
 with $y(0) = 1$, $\frac{dy}{dt}\Big|_{t=0} = -2$

3. For the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$,

(1) Find the inverse of A by Gauss-Jordan Method. (6 %)

(2) Verify $(A^2)^{-1} = (A^{-1})^2$ for A. (6%)

(3) Prove the formula $(A^2)^{-1} = (A^{-1})^2$. (6%)

4. Compute the flux of water through the parabolic cylinder $S: y = x^2$, $0 \le x \le 2$, $0 \le z \le 3$ (as below) if the velocity vector is $\vec{v} = \vec{F} = \begin{bmatrix} 3z^2, 6, 6xz \end{bmatrix}$, speed being measured in meters/sec. (Generally, $\vec{F} = \rho \ \vec{v}$, but water has the density $\rho = 1 \ \mathrm{gm/cm^3}$.) (15 %)

元智大學 101 學年度研究所 碩士班 招生試題卷

先進能源碩士學

位學程

组別: 能源技術組

科目: 工程數學

用紙第2 頁共2 頁

●不可使用電子計算機

A two-dimensional rectangular plate is subjected to the boundary conditions shown as below.
Derive an expression for the steady state temperature distributions T(x,y) with solving the heat conduction equation. (17 %)

The heat conduction equation is:

$$\frac{\partial^2 T(x,y)}{\partial x^2} + \frac{\partial^2 T(x,y)}{\partial y^2} = 0$$

Please find the solution in sin, cos, sinh, cosh series functions by the method of separation variables.

6. There is periodic square wave with analytic represented as f(x) function

$$f(x) = \begin{cases} -k & \text{when } -\pi < x < 0 \\ k & \text{when } 0 < x < \pi \end{cases}$$

and
$$f(x+2\pi) = f(x)$$

Please find the Fourier coefficient of a_n , b_n and their series functions to present the f(x) functions. (17%)